NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
On May 1, 2023, NIST researchers published a paper titled: “ Nb/a-Si/Nb Josephson junctions for high-density superconducting circuits” by David Olaya, John
Logan Howe, Bart van Zeghbroeck, David Olaya, John Biesecker, Charles Burroughs, Peter Hopkins, Samuel Benz
Measurement of signals generated by superconducting Josephson junction (JJ) circuits require ultra-fast components located in close proximity to the generating
Chuanhong Liu, Robert McDermott, Britton Plourde, Andrew Ballard, Jonathan DuBois, Pete Hopkins, David Olaya, John Biesecker, Samuel P. Benz, Dan Schmidt, Joel Ullom
The single flux quantum (SFQ) digital superconducting logic family has been proposed as a practical approach for controlling next-generation superconducting
Manuel Castellanos Beltran, Adam Sirois, Logan Howe, David Olaya, John Biesecker, Samuel P. Benz, Pete Hopkins
Compared to traditional semiconductor control electronics (TSCE) located at room temperature, cryogenic single flux quantum (SFQ) electronics can provide qubit