Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Patents by Stephen Eckel

Patents listed here reflect only technologies patented from FY 2018-present. To view all of NIST's patented technologies, visit the NIST pages on the Federal Laboratory Consortium website.

Displaying 1 - 4 of 4

Optical Refraction Barometer

NIST Inventors
Kevin O Douglass , Stephen Eckel , Jacob Edmond Ricker and Jay H. Hendricks
A new method for measuring refractivity-based pressure changes using a dual Fabry-Perot cavity utilizing a single laser with off-set sideband locking to the second cavity. The method thus far has shown sensitivity and resolution of 4 mPa.

Uniaxial Counter-Propagating Monolaser Atom Trap

NIST Inventors
Stephen Eckel , James A. Fedchak , Julia Scherschligt , Daniel Barker , Eric Norrgard and Nikolai Klimov
A uniaxial counter-propagating monolaser atom trap cools and traps atoms with a single a laser beam and includes: an atom slower that slows atoms to form slowed atoms; an optical diffractor including: a first diffraction grating that receives primary light and produces first reflected light; a
Image for 10,816,325

Deformometer for Determining Deformation of an Optical Cavity Optic

NIST Inventors
Zeeshan Ahmed , Kevin O Douglass , Stephen Eckel , Patrick Egan and Jay H. Hendricks
A superconducting waveform synthesizer produces an arbitrary waveform and includes an encoder that produces a bitstream; a pattern generator that produces a current bias pulse from the bitstream; a Josephson junction that produces a quantized output pulse from the current bias pulse; and a converter

Optomechanical Pressure Measurement System And Method Using The Vibrational Modes Of A Membrane

NIST Inventors
Stephen Eckel , James A. Fedchak , Thomas Purdy and Robinjeet Singh
An optomechanical pressure-measurement system measures pressure in the range of 10.sup.−6 Pa-10.sup.−2 Pa by measuring various properties of a vibrational mode of an ultra-thin membrane member. With independent measurements of the thickness and density of the membrane, in addition to the measured