NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Design of a MEMS force sensor for quantitative measurement in the nano- to piconewton range
Published
Author(s)
John M. Moreland
Abstract
We describe the design and fabrication of a MEMS based force sensor with SI traceability for measurement of forces from a few nanonewtons down to 200 piconewtons. The sensor is based on the same principles of operation as the larger-scale Electrostatic Force Balance at NIST. It consists of a silicon rigid arm supported on tethers, two sets of capacitive electrodes for electrostatic actuation and capacitance gradient sensing, and a fiber optic Fabry-Perot cavity interferometer with a demonstrated displacement resolution of 2 picometers. We describe the design of the sensors kinematic stage and its theoretical performance metrics.
Proceedings Title
Proceedings of the MEMS & Microsystems Topical Workshop, 6th International Conference & Exhibition on Device Packaging, Scottsdale, AZ
Moreland, J.
(2010),
Design of a MEMS force sensor for quantitative measurement in the nano- to piconewton range, Proceedings of the MEMS & Microsystems Topical Workshop, 6th International Conference & Exhibition on Device Packaging, Scottsdale, AZ, Scottsdale, AZ, [online], https://doi.org/10.4071/2010DPC-wp23
(Accessed October 8, 2025)