NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
In Situ Ultra-Small-Angle X-Ray Scattering Study of the Solution-Mediated Formation and Growth of Nanocrystalline Ceria
Published
Author(s)
Andrew J. Allen, Vincent A. Hackley, P R. Jemian, Jan Ilavsky, J M. Raitano, S W. Chan
Abstract
A remote-controlled isothermal circulating fluid flow cell is described and results presented for the in situ ultra-small-angle x-ray scattering (USAXS) study of solution-mediated systems and suspensions. The fluid flow prevents settling out of coarse particulates from suspension. Control and online monitoring of flow rate, temperature and suspension conditions such as pH permit real-time studies of solution-mediated processes over several hours. By flowing liquid samples, x-ray induced damage to soft materials and the generation of air bubbles can be reduced or eliminated. Used in conjunction with the large nanometer-to-micrometer scale range accessible in USAXS studies, the flow cell can meausre, in situ and in real time, nanoscale--to-microscale structural characteristics as a function of changing physical and chemical conditions. First results for a real-time flow cell study of nanocrystalline ceria precipitation from solution are presented. Previously unobserved aspects of nucleation and growth in the nanoparticulate ceria formation are revealed. Potential applications for flow cell studies of solution-mediated processes, carbon nanotube systems and bio-particle ensembles are briefly summarized.
Allen, A.
, Hackley, V.
, Jemian, P.
, Ilavsky, J.
, Raitano, J.
and Chan, S.
(2008),
In Situ Ultra-Small-Angle X-Ray Scattering Study of the Solution-Mediated Formation and Growth of Nanocrystalline Ceria, Journal of Applied Crystallography, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=850995
(Accessed October 14, 2025)