NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Field-induced dehydration and optimal ionic escape paths for C2N membranes
Published
Author(s)
Miroslav Barabash, William Gibby, Dmitry Luchinsky, Binquan Luan, Alexander Smolyanitsky, Peter McClintock
Abstract
Most analytic theories describing electrostatically driven ion transport through water-filled nanopores assume that the corresponding permeation barriers are bias-independent. While this assumption may hold for sufficiently wide pores under infinitely small bias, transport through subnanometer pores under finite bias is difficult to interpret analytically. Given recent advances in subnanometer pore fabrication and the rapid progress in detailed computer simulations, it is important to identify and understand the specific field-induced phenomena arising during ion transport. Here we consider an atomistic model of electrostatically driven ion permeation through subnanoporous C2N membranes. We analyze probability distributions of ionic escape trajectories and show that the optimal escape path switches between two different configurations depending on the bias magnitude. We identify two distinct mechanisms contributing to field-induced changes in transport-opposing barriers: a weak one arising from field-induced ion dehydration and a strong one due to the field-induced asymmetry of the hydration shells. The simulated current–voltage characteristics are compared with the solution of the 1D Nernst–Planck model. Finally, we show that the deviation of simulated currents from analytic estimates for large fields is consistent with the field-induced barriers and the observed changes in the optimal ion escape path.
Barabash, M.
, Gibby, W.
, Luchinsky, D.
, Luan, B.
, Smolyanitsky, A.
and McClintock, P.
(2021),
Field-induced dehydration and optimal ionic escape paths for C2N membranes, Journal of Physical Chemistry B, [online], https://doi.org/10.1021/acs.jpcb.1c03255, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=931608
(Accessed October 8, 2025)