NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Probing Electrified Liquid-Solid Interfaces with Scanning Electron Microscopy
Published
Author(s)
Hongxuan Guo, Alexander Yulaev, Evgheni Strelcov, Alexander Tselev, Christopher M. Arble, Andras Vladar, John S. Villarrubia, Andrei Kolmakov
Abstract
The mean free path of secondary electrons in aqueous solutions is on the order of a nanometer, making them a suitable probe of ultrathin electrical double layers at solid-liquid electrolyte interfaces. Employing graphene as an electron-transparent electrode in a two-electrode electrochemical system, we show that the secondary electron yield of the graphene-liquid interface depends on the strength and concentration of electrolyte and applied bias at the remote counter electrode. These observations have been related to polarization-induced changes in the potential distribution within the electrical double layer and demonstrate the feasibility of scanning electron microscopy to examine and map electrified liquid-solid electrified interfaces
Guo, H.
, Yulaev, A.
, Strelcov, E.
, Tselev, A.
, Arble, C.
, Vladar, A.
, Villarrubia, J.
and Kolmakov, A.
(2020),
Probing Electrified Liquid-Solid Interfaces with Scanning Electron Microscopy, ACS Applied Materials and Interfaces, [online], https://doi.org/10.1021/acsami.0c19634, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=930456
(Accessed October 7, 2025)