NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Effect of partial coherence on dimensional measurement sensitivity for DUV scatterfield imaging microscopy
Published
Author(s)
Yoon Sung Bae, Martin Sohn, Dong-Ryoung Lee, Sang-Soo Choi
Abstract
Optical scatterfield imaging microscopy technique which has the capability of controlling scattered fields in the imaging mode is useful for quantitative nanoscale dimensional metrology that yields precise characterization of nanoscale features for semiconductor device manufacturing process control. To increase the sensitivity in the metrology using this method, it is required to optimize illumination and collection optics that enhance scatterfield signals from the nanoscale targets. Partial coherence of the optical imaging system is used not only for enhancing image quality in the traditional microscopy or lithography but also for increasing the sensitivity of the scatterfield imaging microscopy. This paper presents an empirical investigation of the effect of partial coherence on measurement sensitivity using a deep ultraviolet scatterfield imaging microscope platform that uses a 193 nm excimer laser as a source and a conjugate back focal plane as a unit for controlling partial coherence. Dimensional measurement sensitivity is assessed through analyzing scatterfield images measured at the edge area of periodic multiline structures with linewidths ranging from 44 - 80 nm on a Molybdenum Silicide (MoSi) photomask. Intensities scattered from the targets under the illuminations with various partial coherence factors and two orthogonal polarizations are assessed with respect to dimensional measurement sensitivity. Combinations of partial coherence factors, target size ranges, and polarizations for higher sensitivity are identified and discussed.
Bae, Y.
, Sohn, M.
, Lee, D.
and Choi, S.
(2019),
Effect of partial coherence on dimensional measurement sensitivity for DUV scatterfield imaging microscopy, Optics Express, [online], https://doi.org/10.1364/OE.27.029938, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=928348
(Accessed October 10, 2025)