NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Room-temperature-deposited dielectrics and superconductors for integrated photonics
Published
Author(s)
Jeffrey M. Shainline, Sonia M. Buckley, Nima Nader, Cale M. Gentry, Kevin C. Cossel, Milos A. Popovic, Nathan R. Newbury, Richard P. Mirin
Abstract
We present an approach to fabrication and packaging of integrated photonic devices that utilizes waveguide and detector layers deposited at near-ambient temperature. All lithography is performed with a 365 nm i-line stepper, facilitating low cost and high scalability. We have shown low-loss SiN waveguides, high-Q ring resonators, critically coupled ring resonators, 50/50 beam splitters, Mach-Zehnder interferometers (MZIs) and a process-agnostic fiber packaging scheme. We have further explored the utility of this process for applications in nonlinear optics and quantum photonics. We demonstrate spectral tailoring and octave-spanning supercontinuum generation as well as the integration of superconducting nanowire single photon detectors with MZIs and channel-dropping filters. The packaging approach is suitable for operation up to 160 \degree C as well as below 1 K. The process is well suited for augmentation of existing foundry capabilities or as a stand-alone process.
Shainline, J.
, Buckley, S.
, Nader, N.
, Gentry, C.
, Cossel, K.
, Popovic, M.
, Newbury, N.
and Mirin, R.
(2017),
Room-temperature-deposited dielectrics and superconductors for integrated photonics, Applied Physics Letters, [online], https://doi.org/10.1364/OE.25.010322
(Accessed October 9, 2025)