Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Projects/Programs

Displaying 1 - 19 of 19

Atom Manipulation with the Scanning Tunneling Microscope

Ongoing
Manipulation of single atoms with the scanning tunneling microscope is made possible through the controlled and tunable interaction between the atoms at the end of the STM probe tip and the single atom (adatom) on a surface that is being manipulated. In the STM tunneling junction used for atom

Designing Advanced Scanning Probe Microscopy Instruments

Ongoing
SPM is a general acronym for various probe instruments. The "P" in SPM stands for various types of probe measurements, such as capacitance (C), force (F), tunneling (T), etc. The scanning tunneling microscope (STM), including custom designs at the CNST, uses the quantum mechanical principle of

Diamond NV Center Magnetometry

Ongoing
A flaw in a crystal might not be an intuitive choice for a measurement tool, but the nitrogen-vacancy (NV-) defect in diamond is something special. Using light, we prepare the NV- center’s the quantum spin state, it interacts with magnetic fields, and we read out the resulting spin state through

Exciton and Charge Transport Dynamics in Organic Semiconductors

Ongoing
Our approach toward establishing connections between the application space and physical phenomena includes developing electrical/optical devices and measurements that can be used for physical measurement, physical measurements that can be applied to real devices, and device design that can be tuned

Manipulation and Imaging of Dilute Densities of Electron Spins

Ongoing
While the characteristics of the unpaired electrons which are trapped in these bonding errors have a dramatic impact on the macroscale material properties, observing these same unpaired electrons has proven quite difficult. These unpaired electrons are transient in time, temperature, and pressure

Measuring Topological Insulator Surface State Properties

Ongoing
A family of TI materials can by synthesized by combining binary compounds of Bismuth (Bi) or Antimony (Sb) with Selenium (Se) and Tellurium (Te) to form Bi 2Se 3, Bi 2Te 3, and Sb 2Te 3 compounds. In these material compounds the spin of the electron has a strong interaction with the motion of the

Nanomagnet Dynamics

Ongoing
The motion of the magnetization in magnetic nanostructures is at the core of important technologies such as computer hard drives and magnetic memory chips. Additionally, emerging technologies such as magnetic logic and second-generation spin-torque memory chips write and read "bits" of information

Probing Graphene Electronic Devices with Atomic Scale Measurements

Ongoing
Two of the remarkable features of graphene that are opening avenues to multiple applications are its high transport carrier mobility and the broad tunability of its electronic properties. Graphene charge carriers can be tuned continuously from negative carriers (i.e., electrons), to positive (holes)

Quantum Transport Measurements

Ongoing
It is necessary to isolate, control, and understand the fundamental physics of exotic states of matter to create nanoengineered systems with the requisite quantum properties for quantum information systems and advanced computing applications. We develop measurement capabilities and design test

Sequential Bayesian Experiment Design

Ongoing
We develop and publish the optbayesexpt python package. The package implements sequential Bayesian experiment design to control laboratory experiments for efficient measurements. The package is designed for measurements with: an experiment (possibly computational) that yields measurements and

Spin-orbit interaction in devices and quantum materials

Ongoing
The spin degree of freedom can provide a basis for next-generation electronic devices. Spintronic devices typically include materials with magnetic ordering, such as ferromagnets or antiferromagnets. The state of the magnetization influences charge and spin current through an effect known as

Structure, Defects, and Scattering in Graphene

Completed
The graphene honeycomb lattice is a key element in determining many of graphene's spectacular properties, which are desirable for a host of electronic applications. The graphene 6-fold symmetric lattice gives rise to charge carriers behaving like light-waves having zero mass. The charge carriers in

Theory and Modeling of Materials for Renewable Energy

Ongoing
Nanostructured materials offer potential benefits for a range of renewable energy applications that rely critically on interfaces for separating charges, including photovoltaics, thermoelectrics, and electrochemical energy storage. The use of nanostructures allows scientists and engineers to

Theory of Spin-Orbit Torque

Ongoing
A ferromagnetic material such as iron acquires its magnetization because the magnetic orientation of its constituent atoms all line up in the same way. Because individual electrons also have an intrinsic magnetic moment – which is often referred to as the electron “spin” - they can interact with