Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

GSAS Tutorial - Files

Leslie Struble (University of Illinois) and Paul Stutzman (National Institute of Standards and Technology)

Version 1 (March 2015)

Files

GSAS produces or uses a large number of files. All are stored in the folder in which you read or created the exp file. The more important files when using GSAS are described here. Most of this information is derived from the GSAS manual [4].

  1. Experiment file—This is the main data and control file and has the extension .EXP. It includes the input and output of the refinement. A new file is generated for each refinement. That is, when the experiment file is opened by one of the routines in GSAS that is able to modify its contents, a new version is usually produced, and the next routine in GSAS to access the experiment file opens this new version. Earlier .EXP files are then renamed as .On, where n is a number that increases incrementally.
  2. Powder or histogram file—This is the raw data for the refinement and has the extension .gsas. Routines such as CMPR are available to convert common XRD file formats (such as .gsa, .raw, or .fxye) into .gsas files.
  3. Instrument parameter file—This is the set of instrument-dependent peak profile parameters and has the extension .PRM. It is possible to begin with generic parameters and then refine them using powder data for material with a well-defined crystal structure.
  4. List or line printer output file—This is the output of the refinement and has the extension .lst. This file is updated during each refinement cycle. It includes the figure of merit (Χ2), the computed mass fraction of each phase, and the density of each phase. It is recommended that you view this output throughout the refinement process. You can open and view this using the Lstview tab in Expgui. The Lstview tab also provides a file trim option (file, trim *.lst) to retain only the most recent portions of the file, which will otherwise get quite long as a refinement proceeds.

Structure Data

The base file name key for phase groups and individual phases is provided in Table 1. The ZIP file, Cements_Data, should be unzipped in the PC C-drive for easy access. GSAS prefers folder names without spaces. The data (Table 1) are divided into phase groups in /Structures by format (.EXP, .CIF, .TBL). Within /EXP_1 folder are collections of phases grouped by type (alite, belite, aluminate, ferrite, oxides, alkali sulfates) as noted in Table 1. The file names for specific structures are provided in the fourth column, where the .TBL and .CIF files may be used to view the structure data for manual entry to gain experience in that process. Later, you may wish to read the data directly from the .EXP or .CIF files.

Table 1. GSAS experiment files for selected phase groups and individual structures.

Phase Groups

Phase

Reference

Filename

Alite.EXP

Triclinic

N. Golovastikov, R. Matveeva, N. Belov Kristallografiya, (1975) Vol. 20, pp. 721-729

TC3S1

Monoclinic

F. Nishi, Y. Takeuchi, and I. Maki, Zeit. Krist., (1985)Vol. 172, No. 3-4, pp. 297-314

MC3S1

Monoclinic (M1)

M.-N de Noirfontaine F. Dunstetter, M. Courtial, G. Gasecki, and M Signes-Frehel, Cem. Conc. Res., (2006) 36 54-64

ALITE_M1

Monoclinic (M3)

M.-N de Noirfontaine F. Dunstetter, M. Courtial, G. Gasecki, and M Signes-Frehel, Cem. Conc. Res. (2006) 36 54-64

ALITE_M3

Monoclinic

A.G. De La Torre, S. Bruque, J. Campo, and M.A.G. Aranda, Cem. & Conc. Res. (2002) 32, 1347-1356

MC3S3

Monoclinic

W.G. Mumme, N. Jb. Miner. Mh., (1995) No. 4, pp. 145-160

MC3S4

Rhombohedral

F. Nishi and Y. Takéuchi, Z>eit. Krist., (1984) 168, 197-212

RC3S1

Belite.EXP

Beta

K.H. Jost, B. Ziemer, and R. Seydel, Acta Cryst. (1977) B33, 1696-1700

BC2S3

Beta

W.G. Mumme, R.J. Hill, G. Bushnell-Wye, and E.R. Segnit, Neues Jarb. Mineral. Abh. 169 (1995) 35-68

BC2S2

Alpha

W. Eysel and T. Hahn, Zeit. Krist.,(1970) 131,322-341

AC2S3

Alpha Prime, high

W.G. Mumme, R.J. Hill, G. Bushnell-Wye, and E.R. Segnit, Neues Jarb. Mineral. Abh. 169 (1995) 35-68

APHC2S

Alpha Prime, low

A.M. Il'inets and M.Ya. Bikbau, Kristallografiya (1990) 35, 91-93

APLC2S1

Gamma

S. Udagawa, K. Urabe, M Natsume, and T. Yano, Cem. and Conc. Res., (1980) Vol.10, No. 2, 139-144

GC2S2

Gamma

D.K. Smith, A. Majumdar, and F. Ordway, Acta Cryst. (1965) Vol. 18, 787-795

GC2S3

Aluminate.EXP

Cubic

P.Mondal & J.W.Jeffery, Acta Cryst. (1975) B31, 689-697

CUBC3A1

Cubic

Y. Takeuchi, F. Nishi and I Maki, Zeit. Krist. (1980) 152, 259-307

CUBC3A3

Cubic

R. Berliner, C. Ball, and P.B. West, Cem. Conc. Res., (1997) Vol. 27, No. 4, pp. 551-575

CUBC3A2

Orthorhombic

R. Berliner, C. Ball, and P.B. West, Cem. Conc. Res., (1997) Vol. 27, No. 4, pp. 551-575

C3AORT1

Orthorhombic

Y. Takeuchi, F. Nishi and I Maki, Zeit. Krist. (1980) 152, 259-307

ORTC3A1

Orthorhombic

F.Nishi and Y. Takéuchi, A>cta Cryst. (1975) B31, 1169-1173

ORTC3A2

Orthorhombic

V.Kahlenberg R.X. Fischer, and C.S.J. Shaw, Am. Miner. (2000) Vol. 85, 1492

C4A3-1

Monoclinic

Y. Takéuchi, F>. Nishi, and I. Maki, Zeit. Krist. (1980) 152, 259-307

MC3A1

Monoclinic

Y. Takéuchi, F>. Nishi, and I. Maki, Zeit. Krist. (1980) 152, 259-307

MC3A2

Ferrite.EXP

Orthorhombic

A.A. Colville and S. Geller, Acta Cryst. (1972) B28, 3196-3200

C4AF4

Orthorhombic

R. Berliner, C. Ball, and P.B. West, Cem. Conc. Res., (1997) Vol. 27, No. 4, pp. 551-575

C4AF

AlkaliSulfate.EXP

Arcanite, beta

J.A. McGinnety, Acta Cryst. B28, (1972) 2845 -2852

K2SO4B1

Arcanite, beta

M.T. Robinson, J. Phys. Chem., (1958) 62, 925-928

K2SO4B2

Arcanite, beta

R.W.G. Wyckoff, Crystal Structures, Wiley, 1963      

K2SO4B3

Arcanite, alpha

A.J. van den Berg and F. Tunistra, Acta Cryst. (1978) B34, 3177-3181

K2SO4A1

Aphthitalite

K. Okada and J. Ossaka, Acta Cryst. (1980) B36, 919-921

APHTHI1

Aphthitalite

K. Okada and J. Ossaka, Acta Cryst. (1980) B36, 919-921

APHTHI2

Langbeinite

R.W.G. Wyckoff, Crystal Structures, Wiley, 1963      

LANG1

Metathenardite

W.Eysel, H.H. Höfer, K>.L. Keester, and Th. Hahn, Acta Cryst. (1985) B41, 5-11

METATH1

CalciumSulfate.EXP

Gypsum

M. Atoji and R.E. Rundle, J. Chem. Phys. (1958) Vol. 29, No. 6, 1306

GYPSUM1

Gypsum

B.F. Pedersen and D. Semmingsen, Acta Cryst. (1982) B38, 1074-1077

GYPSUM2

Gypsum

W.F. Cole and C.J. Lancucki, Acta Cryst. (1974) B30, 921-929

GYPSUM3

Anhydrite

A. Kirfel and G. Will, Acta Cryst. (1980), B36, 2881-2890

ANH1

Anhydrite

F.C. Hawthrone and R.B. Ferguson, Canadian Miner. (1975), V.13, 289-292

ANH2

Anhydrite

H. Morikawa, I. Minato, T. Tomita, and S. Iwai, Acta Cryst. B31, (1975), 2164-2165

ANH4

Soluble Anhydrite

C. Bezou, A. Nonat, and J. –C. Mutin, Journal Solid State Chem. (1995), 117, 165-176

ANH3

Bassanite

P. Ballirano, A. Maras, S. Meloni, and R. Caminiti, Eur. Jour. Min. (2001), Vol 13, No. 5, 985-993

Bassanite1

Bassanite

W. Abriel, R. Nesper, Zeit. Krist. (1993), 205, 99-113

Bassanite2

Ox_Si_Car.EXP

Periclase

R.W.G. Wyckoff, Crystal Structures, Wiley, 1963      

Periclase

Free Lime

R.W.G. Wyckoff, Crystal Structures, Wiley, 1963      

Lime

Quartz

G. Smith, L.E. Alexander, Acta Cryst, 16 (1963) p. 462-471

Quartz

Calcite

S.A. Markgraf, R.J. Reeder, Am. Min. (1985) Vol. 70, pp. 590-600

Calcite

Mg Calcite

P.L. Althoff, Am. Min. (1977) Vol. 62, pp. 772-83

MgCalcite

Dolomite

P.L. Althoff, (1977) Am. Min. Vol. 62, pp. 772-83

OxCarSil (phase 5)

InternalStandard.EXP

Corundum

J. Lewis, D. Schwarzenbach,and H.D. Flack, Acta Cryst. (1982), (A38), 733-739

Corundum

Rutile

E.P. Meagher and G.A. Lager, Can. Min., (1979), V. 17, pp. 77-85

Rutile

Zincite

R.W.G. Wyckoff, Crystal Structures, Wiley, 1963

Zincite


Created May 16, 2014, Updated August 25, 2016