NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Three-Dimensional Kinetic Model for the Swelling of Intumescent Materials (NISTIR 5499)
Published
Author(s)
Kathryn M. Butler, Howard R. Baum, Takashi Kashiwagi
Abstract
An intumescent coating protects the underlying surface from fire by swelling into a thick insulating char. Design of intumescent materials has proceeded largely by systematic testing of a variety of formulations, since the mechanisms of physical, thermal and chemical behavior are not as yet well understood. Previous models of intumescent behavior have treated the system as a one-dimensional heat transfer problem through a coating consisting of a char layer and a layer of virgin material separated by a thin pyrolysis zone. In this work, a fully three-dimensional, time-dependent numerical model combining the dynamics of the swelling process, the heat transfer through the coating, and the chemistry of gasification is described.
Butler, K.
, Baum, H.
and Kashiwagi, T.
(1994),
Three-Dimensional Kinetic Model for the Swelling of Intumescent Materials (NISTIR 5499), NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology, Gaithersburg, MD, [online], https://doi.org/10.6028/NIST.IR.5499
(Accessed October 11, 2025)