NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Stability and phase transfer of catalytically active platinum nanoparticle suspensions
Published
Author(s)
Indira Sriram, Alexandra Curtin, Ann C. Chiaramonti Debay, Lauren F. Greenlee, Kavita M. Jeerage
Abstract
In this work, we present a robust synthesis protocol for platinum nanoparticles that yields a monomodal dispersion of particles that are approximately 100 nm in diameter. We determine that these particles are actually agglomerates of much smaller particles, creating a "raspberry" morphology.We demonstrate that these agglomerates are stable at room temperature for at least 8 weeks by dynamic light scattering. Furthermore, we demonstrate consistent electrocatalytic activity for methanol oxidation.Finally, we quantitatively explore the relationship between dispersion solvent and particle agglomeration;specifically, particles are found to agglomerate abruptly as solvent polarity decreases.
Sriram, I.
, Curtin, A.
, Chiaramonti, A.
, Greenlee, L.
and Jeerage, K.
(2015),
Stability and phase transfer of catalytically active platinum nanoparticle suspensions, Journal of Nanoparticle Research, [online], https://doi.org/10.1007/s11051-015-3034-1
(Accessed October 10, 2025)