Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Slip Detection: Analysis and Calibration of Univariate Tactile Signals



Karl Van Wyk, Joseph A. Falco


he existence of tactile afferents sensitive to slip-related mechanical transients in the human hand augments the robustness of grasping through secondary force modulation protocols. Despite this knowledge and the fact that tactile-based slip detection has been researched for decades, robust slip detection is still not an out-of-the-box capability for any commercially available tactile sensor. This research seeks to bridge this gap with a comprehensive study addressing several aspects of slip detection. In particular, key developments include a systematic data collection process yielding millions of sensory data points, a spectral analysis of sensory responses providing insight into sensor behavior, and the application of Long Short-Term Memory (LSTM) neural networks to produce robust slip detectors from three commercially available tactile sensors. Critically, slip detection performance of the tactile technologies is quantified through a measurement methodology that unveils the effects of data window size, sampling rate, material type, slip speed, and sensor manufacturing variability. Results indicate that the investigated commercial tactile sensors are inherently capable of high-quality slip detection.


tactile sensors, slip detection, neural networks, deep learning
Created June 27, 2018, Updated April 7, 2020