Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

In Situ Time-Resolved Attenuated Total Reflectance Infrared Spectroscopy for Probing Metal- Organic Framework Thin Film Growth



Berc Kalanyan, Junjie Zhao, Heather F. Barton, Brent A. Sperling, Gregory N. Parsons


In situ chemical measurements of solution/surface reactions during metal-organic framework (MOF) thin film growth can provide valuable information about the mechanistic and kinetic aspects of key reaction steps, and allow control over crystal quality and material properties. Here, we report a new approach to study the growth of MOF thin films in a flow cell using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). Real-time spectra recorded during continuous flow synthesis were used to investigate the mechanism and kinetics that govern the formation of (Zn, Cu) hydroxy double salts (HDSs) from ZnO thin films and the subsequent conversion of HDS to HKUST-1. We found that both reactions follow pseudo- first order kinetics. Real-time measurements also revealed that the limited mass transport of reactants may lead to partial conversion of ZnO to HDS and therefore leaves an interfacial ZnO layer beneath the HDS film that provides strong adhesion of the HKUST-1 coating to the substrate. This in situ flow-cell ATR-FTIR method is generalizable for studying the dynamic processes of MOF thin film growth, and could be used for other solid/liquid reaction systems involving thin films.
Chemistry of Materials


Created September 21, 2017, Updated November 10, 2018