NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
We derive new formulas for the fundamental solutions of slow, viscous flow, governed by the Stokes equations, in a half-space. They are simpler than the classical representations obtained by Blake and collaborators, and can be efficiently implemented using existing fast solvers libraries. We show, for example, that the velocity field induced by a Stokeslet can be annihilated on the boundary (to establish a zero slip condition) using a single reflected Stokeslet combined with a single Papkovich-Neuber potential that involves only a scalar harmonic function. The new representation has a physically intuitive interpretation.
Gimbutas, Z.
, Greengard, L.
and Veerapaneni, S.
(2015),
Simple and efficient representations for the fundamental solutions of Stokes flow in a half-space, Journal of Fluid Mechanics, [online], https://doi.org/10.1017/jfm.2015.302
(Accessed October 11, 2025)