Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Gabriela Martinez (Assoc)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 4 of 4

A chip-scale atomic beam clock

June 13, 2023
Author(s)
Gabriela Martinez, Chao Li, Alexander Staron, John Kitching, Chandra Raman, William McGehee
We demonstrate a passively pumped, chip-scale atomic beam clock fabricated using a stack of silicon and glass wafers. The device could additionally serve as a platform for compact atom interferometers and other future quantum sensors.

A simple imaging solution for chip-scale laser cooling

November 1, 2021
Author(s)
John Kitching, Gabriela Martinez, A, Gregazzi, Paul Griffin, Aidan Arnold, D. P. Burt, Rodolphe Bouldot, Erling Riis, James McGilligan
We demonstrate a simple stacked scheme that enables absorption imaging through a hole in the surface of a grating magneto-optical trap (GMOT) chip, placed immediately below a micro-fabricated vacuum cell. The imaging scheme is capable of overcoming the

Enhanced observation time of magneto-optical traps using micro-machined non-evaporable getter pumps

October 6, 2020
Author(s)
Rodolphe Boudot, James P. McGilligan, Kaitlin R. Moore, Vincent N. Maurice, Gabriela Martinez, Azure L. Hansen, E. de Clercq, Elizabeth Donley, John Kitching
We show that micro-machined non-evaporable getter pumps (NEGs) can extend the time over which laser cooled atoms can be produced in a magneto-optical trap (MOT), in the absence of other vacuum pumping mechanisms. In a first study, we incorporate a silicon

Laser-cooling in a chip-scale platform

August 3, 2020
Author(s)
James P. McGilligan, Kaitlin R. Moore, Argyrios Dellis, Gabriela Martinez, E. de Clercq, Paul Griffin, A S. Arnold, E Riis, Rodolphe Boudot, John Kitching
Chip-scale atomic devices built around micro-fabricated alkali vapor cells are at the forefront of compact metrology and atomic sensors. We demonstrate a micro-fabricated vapor cell that is actively pumped to ultra-high-vacuum (UHV) to achieve laser