Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Tammy Lucas (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 3 of 3

Indium Bump Bonding: Advanced Integration Techniques for Low-Temperature Detectors and Readout

April 20, 2024
Author(s)
Tammy Lucas, John Biesecker, W.Bertrand (Randy) Doriese, Shannon Duff, Malcolm Durkin, Richard Lew, Joel Ullom, Michael Vissers, Dan Schmidt
We have examined the influence of bump shape and bonding pressure on low temperature electrical properties of indium bump connections including transition temperature, normal resistance, and superconducting critical current. We describe our test structures

Symmetric time-division-multiplexed SQUID readout with two-layer switches for future TES observatories

April 4, 2023
Author(s)
Malcolm Durkin, Scott Backhaus, Simon Bandler, James Chervenak, Ed Denison, W.Bertrand (Randy) Doriese, Johnathon Gard, Gene C. Hilton, Richard Lew, Tammy Lucas, Carl D. Reintsema, Dan Schmidt, Stephen Smith, Joel Ullom, Leila R. Vale, Michael Vissers, Nicholas Wakeham
Time-division multiplexing (TDM) of transition-edge-sensor (TES) microcalorimeters is being developed as the readout tech-nology for the Athena X-ray integral field unit (X-IFU) and is under consideration for future TES-bolometer missions like CMB-S4. We

Indium Bump Process for Low-Temperature Detectors and Readout

May 20, 2022
Author(s)
Tammy Lucas, John Biesecker, W.Bertrand (Randy) Doriese, Shannon Duff, Gene C. Hilton, Joel Ullom, Michael Vissers, Dan Schmidt
We describe our indium bump process for low-temperature detectors and associated readout. A titanium nitride under bump metallization layer (UBM) is reactively sputtered onto wiring pads as a diffusion barrier and adhesion layer. Indium is thermally