Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: John Biesecker (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 8 of 8

Indium Bump Bonding: Advanced Integration Techniques for Low-Temperature Detectors and Readout

April 20, 2024
Tammy Lucas, John Biesecker, W.Bertrand (Randy) Doriese, Shannon Duff, Malcolm Durkin, Richard Lew, Joel Ullom, Michael Vissers, Dan Schmidt
We have examined the influence of bump shape and bonding pressure on low temperature electrical properties of indium bump connections including transition temperature, normal resistance, and superconducting critical current. We describe our test structures

Single Flux Quantum-Based Digital Control of Superconducting Qubits in a Multi-Chip Module

June 24, 2023
Chuanhong Liu, Robert McDermott, Britton Plourde, Andrew Ballard, Jonathan DuBois, Pete Hopkins, David Olaya, John Biesecker, Samuel P. Benz, Dan Schmidt, Joel Ullom
The single flux quantum (SFQ) digital superconducting logic family has been proposed as a practical approach for controlling next-generation superconducting qubit arrays with more favorable scaling properties compared to conventional microwave-based

Nb/a-Si/Nb-junction Josephson-based arbitrary waveform synthesizers for quantum information

February 24, 2023
David Olaya, John Biesecker, Manuel Castellanos Beltran, Adam Sirois, Paul Dresselhaus, Samuel P. Benz, Pete Hopkins, Logan Howe
We demonstrate Josephson arbitrary waveform synthesizers (JAWS) with increased operating temperature range for temperatures below 4 K. These JAWS synthesizers were fabricated with externally-shunted Nb/a-Si/Nb junctions whose critical current exhibits

Demonstration of Superconducting Optoelectronic Single-Photon Synapses

October 6, 2022
Saeed Khan, Bryce Primavera, Jeff Chiles, Adam McCaughan, Sonia Buckley, Alexander Tait, Adriana Lita, John Biesecker, Anna Fox, David Olaya, Richard Mirin, Sae Woo Nam, Jeff Shainline
Superconducting optoelectronic hardware is being explored as a path towards artificial spiking neural networks with unprecedented scales of complexity and computational ability. Such hardware combines integrated-photonic components for few-photon, light

Measurement Challenges for Scaling Superconductor-based Quantum Computers

June 23, 2022
Pete Hopkins, Manuel Castellanos Beltran, John Biesecker, Paul Dresselhaus, Anna Fox, Logan Howe, David Olaya, Adam Sirois, Dylan Williams, Samuel P. Benz, Alirio De Jesus Soares Boaventura, Justus Brevik
Global investment in the research and development of quantum information systems by industry, government, and academic institutions continues to accelerate and is expected to reach over $16B by 2027 [1]. Systems based on optical photons, atoms or ions

Indium Bump Process for Low-Temperature Detectors and Readout

May 20, 2022
Tammy Lucas, John Biesecker, W.Bertrand (Randy) Doriese, Shannon Duff, Gene C. Hilton, Joel Ullom, Michael Vissers, Dan Schmidt
We describe our indium bump process for low-temperature detectors and associated readout. A titanium nitride under bump metallization layer (UBM) is reactively sputtered onto wiring pads as a diffusion barrier and adhesion layer. Indium is thermally

Digital Control of Superconducting Qubit Using a Josephson Pulse Generator at 3K

March 25, 2022
Logan Howe, Manuel Castellanos Beltran, Adam Sirois, David Olaya, John Biesecker, Paul Dresselhaus, Samuel P. Benz, Pete Hopkins
Scaling of quantum computers to fault-tolerant levels relies critically on the integration of energy-efficient, stable, and reproducible qubit control and readout electronics. In comparison to traditional semiconductor-control electronics (TSCE) located at