Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by:

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 6 of 6

Experimental realization of an extended Fermi-Hubbard model using a 2D lattice of dopant-based quantum dots

November 11, 2022
Author(s)
Richard M. Silver, Jonathan Wyrick, Xiqiao Wang, Ranjit Kashid, Garnett W. Bryant, Albert Rigosi, Pradeep Namboodiri, Ehsan Khatami
The Hubbard model is one of the primary models for understanding the essential many-body physics in condensed matter systems such as Mott insulators and cuprate high-Tc superconductors. Due to the long-range Coulomb interactions, accessible low

Electron-electron interactions in low-dimensional Si:P delta layers

June 15, 2020
Author(s)
Joseph Hagmann, Xiqiao Wang, Ranjit Kashid, Pradeep Namboodiri, Jonathan Wyrick, Scott W. Schmucker, Michael Stewart, Richard M. Silver, Curt A. Richter
Key to producing quantum computing devices based on the atomistic placement of dopants in silicon by scanning tunneling microscope (STM) lithography is the formation of embedded highly doped Si:P delta layers (δ-layers). This study investigates the

Atomic-scale control of tunneling in donor-based devices

May 11, 2020
Author(s)
Xiqiao Wang, Jonathan E. Wyrick, Ranjit V. Kashid, Pradeep N. Namboodiri, Scott W. Schmucker, Andrew Murphy, Michael D. Stewart, Richard M. Silver
Atomically precise donor-based quantum devices are a promising candidate for scalable solid- state quantum computing. Atomically precise design and implementation of the tunnel coupling in these devices is essential to realize gate-tunable exchange

Low-resistance, high-yield electrical contacts to atom scale Si:P devices using palladium silicide

March 29, 2019
Author(s)
Scott W. Schmucker, Pradeep Namboodiri, Ranjit Kashid, Xiqiao Wang, Binhui Hu, Jonathan Wyrick, Alline Myers, Joshua D. Schumacher, Richard M. Silver, Michael Stewart
Scanning tunneling microscopy (STM) enables the fabrication of 2-D delta-doped structures in Si with atomistic precision, with applications from tunnel field effect transistors to qubits. The combination of a very small contact area and the restrictive