Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by:

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 8 of 8

Optimal transport and colossal ionic mechano-conductance in graphene crown ethers

July 12, 2019
Author(s)
Subin Sahu, Justin E. Elenewski, Christoph Rohmann, Michael P. Zwolak
Biological ion channels balance electrostatics and hydration, yielding large ion selectivities alongside high transport rates. These macromolecular systems are often interrogated through point mutations of their pore domain, limiting the scope of

Colloquium: Ionic phenomena in nanoscale pores through 2D materials

June 27, 2019
Author(s)
Subin Sahu, Michael P. Zwolak
Ion transport through channels and nanoscale pores cuts across many disciplines, from single- molecule sensing to pharmacology and cellular physiology to battery and fuel cell technologies. Two-dimensional materials, such as graphene, MoS$_2$, and

Golden aspect ratio for ion transport simulation in nanopores

July 5, 2018
Author(s)
Subin Sahu, Michael P. Zwolak
Access resistance indicates how well current carriers from the bulk medium can converge to a pore or opening, and is important in many fields, such as cell biology, electronics, electrochemical engineering, thermal transport, among others. In simplified

Maxwell-Hall access resistance in graphene nanopores

January 24, 2018
Author(s)
Subin Sahu, Michael P. Zwolak
The resistance due to the convergence from bulk to a constriction -- e.g., a nanopore -- is a mainstay of transport phenomena. In classical electrical conduction, Maxwell -- and later Hall for ionic conduction -- predicted this access or convergence

Enabling photoemission electron microscopy in liquids via graphene-capped microchannel arrays

February 8, 2017
Author(s)
Hongxuan Guo, Evgheni Strelcov, Alexander Yulaev, Jian Wang, Narayana Appathurai, Stephen Urquhart, John Vinson, Subin Sahu, Michael P. Zwolak, Andrei Kolmakov
Photoelectron emission microscopy (PEEM) is a powerful tool to spectroscopically access dynamic surface processes at the nanoscale but is traditionally limited to ultra-high or moderate vacuum conditions. Here, we develop a novel graphene-capped