Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Maxwell-Hall access resistance in graphene nanopores

Published

Author(s)

Subin Sahu, Michael P. Zwolak

Abstract

The resistance due to the convergence from bulk to a constriction -- e.g., a nanopore -- is a mainstay of transport phenomena. In classical electrical conduction, Maxwell -- and later Hall for ionic conduction -- predicted this access or convergence resistance to be independent of the bulk dimensions and inversely dependent on pore radius, a, for a perfectly circular pore. More generally, though, this resistance is contextual, it depends on the presence of functional groups/charges and fluctuations, as well as the (effective) constriction geometry/dimensions. Addressing the context generically requires all-atom simulations, but this demands enormous resources due to the algebraically decaying nature of convergence. We develop a finite-size scaling analysis -- reminiscent of the treatment of critical phenomena -- that makes the convergence resistance accessible in such simulations. This analysis suggests that there is an ``golden aspect ratio'' for the simulation cell that yields the infinite system result with a finite system. We employ this approach to resolve the experimental and theoretical discrepancies in the radius-dependence of graphene nanopore resistance.
Citation
Physical Chemistry Chemical Physics
Volume
20
Issue
7

Keywords

Ion transport, nanopores, access resistance, ion channels
Created January 24, 2018, Updated November 10, 2018