Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Kevin Cossel (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 23 of 23

Open-path measurement of stable water isotopologues using mid-infrared dual-comb spectroscopy

September 8, 2023
Author(s)
Daniel Herman, Griffin Mead, Fabrizio Giorgetta, Esther Baumann, Nathan Malarich, Brian Washburn, Nathan R. Newbury, Ian Coddington, Kevin Cossel
We present an open-path mid-infrared dual-comb spectrometer (DCS) capable of precise measurement of the stable water isotopologues H216O and HD16O. This system runs in a remote configuration at a rural test site with high uptime and achieves a precision of

Dual-Comb Spectroscopy of Carbon Dioxide and Methane Across a 14.5 km Long Outdoor Path

September 1, 2023
Author(s)
Fabrizio Giorgetta, Esther Baumann, Brian Washburn, Nathan Malarich, Jean-Daniel Deschenes, Ian Coddington, Nathan Newbury, Kevin Cossel
Greenhouse-gas dual-comb spectroscopy is extended to a city-scale 14.5-km path length using remote receiver and data acquisition. This configuration enables lower link losses and longer path lengths compared to folded paths with a remote retroreflector

MODELLING AND REMOVING DIGITIZER NONLINEARITY FOR ACCURATE DUAL FREQUENCY COMB SPECTROSCOPY

August 15, 2023
Author(s)
Nathan Malarich, Kevin Cossel, JEAN-DANIEL DESCHENES, Fabrizio Giorgetta, Brian Washburn, Nathan Newbury, Ian Coddington, Jerome Genest
Operation of any dual-comb spectrometer requires digitization of the interference signal before further processing. Nonlinearities in the analog-to-digital conversion can alter the apparent gas concentration by multiple percent, limiting both precision and

Extending Dual-Comb Spectroscopy Path Length to 14.5 km by Separating Receiver from Transmitter

June 1, 2023
Author(s)
Fabrizio Giorgetta, Esther Baumann, Brian Washburn, Nathan Malarich, J.-D. Deschenes, Ian Coddington, Nathan Newbury, Kevin Cossel
We present dual-comb spectroscopy across a 14.5-km path using remote receiver and data acquisition. This configuration results in lower link losses compared to open-path configurations with co-located transmitter and receiver.

Validation of open-path dual-comb spectroscopy against an O2 background

January 30, 2023
Author(s)
Nathan Malarich, Brian Washburn, Kevin Cossel, Fabrizio Giorgetta, Griffin Mead, Daniel Herman, Nathan R. Newbury, Ian Coddington
Dual-comb spectroscopy measures greenhouse gas concentrations over kilometer-length open-air paths with high precision. However, characterizing the absolute accuracy of these outdoor measurements is challenging, as most gas species have fluctuating

A compact mid-infrared dual-comb spectrometer for outdoor spectroscopy

April 9, 2022
Author(s)
Gabriel Ycas, Fabrizio Giorgetta, Jacob T. Friedlein, Daniel Herman, Kevin Cossel, Esther Baumann, Nathan R. Newbury, Ian Coddington
This manuscript describes the design of a robust, mode-locked laser based, mid-infrared dual- comb spectrometer operating in the 3.1-µm to 4-µm spectral window. The design represents an improvement in signal-to-noise, system size, power consumption and

Remote sensing using open-path dual-comb spectroscopy

January 1, 2021
Author(s)
Kevin Cossel, Eleanor M. Waxman, Esther Baumann, Fabrizio Giorgetta, Brian Washburn, Caroline Alden, Sean Coburn
Open-path dual-comb spectroscopy (DCS) is an emerging technique for long open-path measurements across km-scale paths. It provides both broad spectral coverage over hundreds of wavenumbers with high spectral resolution and negligible instrument lineshape

Dual-comb photoacoustic spectroscopy

June 19, 2020
Author(s)
Jacob T. Friedlein, Esther Baumann, Kimberly Briggman, Gabriel M. Colacion, Fabrizio R. Giorgetta, Daniel I. Herman, Nathan R. Newbury, Jeeseong Hwang, Ian R. Coddington, Kevin C. Cossel, Gabriel Ycas, Christopher Yung, Eli V. Hoenig, Edgar F. Perez, Aaron Goldfain
Spectrally-resolved photoacoustic imaging is a promising technique for label-free imaging in optically scattering materials. However, this technique often requires acquisition of a separate image at each wavelength of interest. This reduces imaging speeds

Femtosecond Time Synchronization of Optical Clocks Off a Flying Quadcopter

April 18, 2019
Author(s)
Hugo Bergeron, Laura C. Sinclair, William C. Swann, Isaac H. Khader, Kevin C. Cossel, Michael A. Cermak, Jean-Daniel Deschenes, Nathan R. Newbury
Optical clock networks promise advances in global navigation, time distribution, coherent sensing, relativity experiments, dark matter searches and other areas1-12. Such networks will need to compare and synchronize clocks over free-space optical links

Dual comb spectroscopy with tailored spectral broadening in nanophotonic Si3N4

April 15, 2019
Author(s)
Esther Baumann, Edgar Perez, Gabriel M. Colacion, Fabrizio Giorgetta, Kevin Cossel, Gabriel Ycas, David Carlson, Kartik Srinivasan, Scott Papp, Ian Coddington, Nathan R. Newbury
Spectral broadening of compact robust Er+: fiber combs is demonstrated with tailored Si3N4 waveguides to obtain spectrally-smooth broadened light in the 2 μm 2.5 μm atmospheric water window for gas spectroscopy. This successfully extends the Er+ spectrum

Femtosecond Optical Two-Way Time-Frequency Transfer in the Presence of Motion

February 22, 2019
Author(s)
Laura C. Sinclair, Hugo Bergeron, William C. Swann, Isaac H. Khader, Kevin C. Cossel, Michael A. Cermak, Nathan R. Newbury, Jean-Daniel Deschenes
Platform motion poses significant challenges to high-precision optical time and frequency transfer. We give a detailed description of these challenges and their solutions in comb-based optical two-way time and frequency transfer (O-TWTFT). Specifically, we

Mid-infrared dual-comb spectroscopy of volatile organic compounds across long open-air paths

February 5, 2019
Author(s)
Gabriel Ycas, Fabrizio Giorgetta, Kevin Cossel, Eleanor M. Waxman, Esther Baumann, Nathan R. Newbury, Ian Coddington
Open-path measurements of atmospheric gas species in the air, including volatile organic compounds, are essential to quantify emissions from sources like oil and gas, forest fires, and industry. Here, we extend open-path dual-comb spectroscopy to probe the

Open-path dual-comb spectroscopy to an airborne retroreflector

July 20, 2017
Author(s)
Kevin C. Cossel, Eleanor M. Waxman, Fabrizio R. Giorgetta, Michael A. Cermak, Dan Hesselius, Shalom Ruben, William C. Swann, Gregory B. Rieker, Nathan R. Newbury
We demonstrate a new technique for spatial mapping of multiple atmospheric gas species. This system is based on high-precision dual-comb spectroscopy to a retroreflector mounted on a flying multicopter. We measure the atmospheric absorption over long open

Room-temperature-deposited dielectrics and superconductors for integrated photonics

May 1, 2017
Author(s)
Jeffrey M. Shainline, Sonia M. Buckley, Nima Nader, Cale M. Gentry, Kevin C. Cossel, Milos A. Popovic, Nathan R. Newbury, Richard P. Mirin
We present an approach to fabrication and packaging of integrated photonic devices that utilizes waveguide and detector layers deposited at near-ambient temperature. All lithography is performed with a 365 nm i-line stepper, facilitating low cost and high

Gas-phase broadband spectroscopy using active sources: progress, status, and applications

January 1, 2017
Author(s)
Kevin C. Cossel, Eleanor M. Waxman, Ian A. Finneran, Geoffery A. Blake, Jun Ye, Nathan R. Newbury
Broadband spectroscopy is an invaluable tool for measuring multiple gas-phase species simultaneously. In this work we review current applications for broad-band spectroscopy. We discuss components of broad-band spectroscopy including light sources