Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Pete Hopkins (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 31 of 31

Jitter Sensitivity Analysis for Pulsed-Output RF Superconducting Digital to Analog Converters

November 5, 2018
Author(s)
Christine A. Donnelly, Justus A. Brevik, Paul D. Dresselhaus, Peter F. Hopkins, Samuel P. Benz
We present the first analysis of the jitter sensitivity of a superconductive digital-to-analog converter (DAC)for use as a reference RF source. This analysis is important for maintaining quantum-accurate voltage output as we extend our superconductor-based

Radiofrequency Waveform Synthesis with the Josephson Arbitrary Waveform Synthesizer

July 7, 2018
Author(s)
Justus Brevik, Christine A. Donnelly, Nathan Flowers-Jacobs, Anna Fox, Pete Hopkins, Paul Dresselhaus, Samuel P. Benz
We have measured the frequency-dependent voltage output up to 100 MHz of a modified version of the Josephson Arbitrary Waveform Synthesizer. An impedance-matching resistor was integrated within the Josephson junction array circuit to match the nominally

Ultralow power artificial synapses using nanotextured magnetic Josephson junctions

January 28, 2018
Author(s)
Michael L. Schneider, Christine A. Donnelly, Stephen E. Russek, Burm Baek, Matthew R. Pufall, Peter F. Hopkins, Paul D. Dresselhaus, Samuel P. Benz, William H. Rippard
Neuromorphic computing is a promising avenue to dramatically improve the efficiency of certain computational tasks, such as perception and decision making. Neuromorphic systems are currently being developed for critical applications ranging from self

Fabrication of High-Speed and High-Density Single-Flux-Quantum Circuits at NIST

June 11, 2017
Author(s)
David Olaya, Paul Dresselhaus, Pete Hopkins, Samuel P. Benz
The development of a fabrication process for single-flux-quantum (SFQ) digital circuits is a fundamental part of the NIST effort to develop a gigahertz waveform synthesizer with quantum voltage accuracy. This paper describes the current SFQ fabrication

Scalable, High-Speed, Digital Single-Flux-Quantum Circuits at NIST

June 11, 2017
Author(s)
Pete Hopkins, Manuel Castellanos Beltran, Christine A. Donnelly, Paul Dresselhaus, David Olaya, Adam Sirois, Samuel P. Benz
We describe NIST's capabilities for designing and fabricating niobium-based single-flux quantum (SFQ) digital and mixed-signal circuits and show test results of our first circuits. We have assembled a package of software design tools that are readily

Stochastic Single Flux Quantum Neuromorphic Computing using Magnetically Tunable Josephson Junctions

October 16, 2016
Author(s)
Stephen E. Russek, Christine A. Donnelly, Michael Schneider, Burm Baek, Matthew Pufall, William Rippard, Pete Hopkins, Paul Dresselhaus, Samuel P. Benz
Abstract— Single flux quantum (SFQ) circuits form a natural neuromorphic technology with SFQ pulses and superconducting transmission lines simulating action potentials and axons, respectively. Here we present a new component, magnetic Josephson junctions