Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Mark Tyra (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 14 of 14

Joint Determination of Reactor Antineutrino Spectra from 235U and 239Pu Fission using the Daya Bay and PROSPECT Experiments

February 22, 2022
Author(s)
Hans Pieter Mumm, Denis E. Bergeron, Mark Tyra, Svetlana Nour, Jerome LaRosa, The PROSPECT Collaboration
A joint determination of the reactor antineutrino spectra resulting from the fission of 235U and 239Pu has been carried out by the Daya Bay and PROSPECT collaborations. This letter defines the level of compatibility of 235U spectrum measurements from the

Joint Measurement of the 235U Antineutrino Spectrum with PROSPECT and STEREO

February 22, 2022
Author(s)
Hans Pieter Mumm, Denis E. Bergeron, Mark Tyra, Jerome LaRosa, Svetlana Nour, PROSPECT collaboration, STEREO collaboration
The PROSPECT and STEREO collaborations present a combined measurement of the pure 235U antineutrino spectrum, with site specific corrections and effects dependent on the separate detectors removed. The spectral measurements of the two highest-precision

Assessing the Microscale Heterogeneity in Candidate Standard Reference Material 4600: Surrogate Post-detonation Urban Debris

August 18, 2021
Author(s)
Jacqueline L. Mann, John L. Molloy, Mark Tyra, Kevin Pfeuffer, Barbara Fallon, JoAnn Buscaglia
Nondestructive microbeam X-ray fluorescence (µXRF) spectrometry has been used to investigate the elemental microheterogeneity in a candidate nuclear forensics reference material (RM), NIST SRM 4600: Surrogate Post-detonation Urban Debris. Using a principal

Limits on Strongly Interacting Sub-GeV Dark Matter from the PROSPECT Reactor Antineutrino Experiment

July 16, 2021
Author(s)
Hans Pieter Mumm, Denis E. Bergeron, Mark Tyra, Jerome LaRosa, Svetlana Nour, M Andriamirado, A.B. Balantekin, H.R. Band, C.D. Bass, D. Berish, N.S. Bowden, J.P. Brodsky, C.D. Bryan, T. Classen, A.J. Conant, G. Deichert, M.V. Diwan, M.J. Dolinski, A. Erickson, B.T. Foust, J.K. Gaison, A. Galindo-Uribarri, C.E. Gilbert, B.W. Goddard, B.T. Hackett, S. Hans, A.B. Hansell, K.M. Heeger, D.E. Jaffe, X. Ji, D.C. Jones, O. Kyzylova, C.E. Lane, T.J. Langford, B.R. Littlejohn, X. Lu, J. Maricic, M.P. Mendenhall, A.M. Meyer, R. Milincic, I. Mitchell, P.E. Mueller, J. Napolitano, C. Nave, R. Neilson, J.A. Nikkel, D. Norcini, J.L. Palomino, D.A. Pushin, X. Qian, E. Romero-Romero, R. Rosero, P.T. Surukuchi, R.L. Varner, D. Venegas-Vargas, P.B. Weatherly, C. White, J. Wilhelmi, A. Woolverton, M. Yeh, A. Zhang, C. Zhang, X. Zhang
If dark matter has mass lower than around 1 GeV, it will not impart enough energy to cause detectable nuclear recoils in many direct-detection experiments. However, if dark matter is upscattered to high energy by collisions with cosmic rays, it may be

Non-fuel Antineutrino Contributions in the High Flux Isotope Reactor

May 14, 2020
Author(s)
PROSPECT COLLABORATION, Jerome LaRosa, Hans Pieter Mumm, Svetlana Nour, Mark Tyra, Denis E. Bergeron
Reactor neutrino experiments have seen major improvements in precision in recent years. With the experimental uncertainties starting to surpass those from theory, it is important to carefully consider all sources of e in making theoretical predictions. One

Optimum lithium loading of a liquid scintillator for neutron and neutrino detection

February 11, 2020
Author(s)
Hans Pieter Mumm, Denis E. Bergeron, Mark Tyra, Jerome LaRosa, Svetlana Nour, T.J. Langford, Dimitry A. Pushin
Neutral particle detection in high-background environments is greatly aided by the ability to easily load 6Li into liquid scintillators. We describe a readily available and inexpensive liquid scintillation cocktail stably loaded with up to 1 % Li by mass

Measurement of the Antineutrino Spectrum from 235U Fission at HFIR with PROSPECT

June 28, 2019
Author(s)
Hans Pieter Mumm, Denis E. Bergeron, Mark Tyra, Svetlana Nour, Jerome LaRosa
This Letter reports the first measurement of the 235U e energy spectrum by PROSPECT, the Precision Reactor Oscillation and Spectrum experiment, operating 7.9 m from the 85MWth highly-enriched uranium (HEU) High Flux Isotope Reactor. With a surface-based

The PROSPECT Reactor Neutrino Experiment

April 1, 2019
Author(s)
Hans Pieter Mumm, Denis E. Bergeron, Mark Tyra, Jerome LaRosa, Svetlana Nour
The Precision Reactor Oscillation and Spectrum Experiment, PROSPECT, is designed to make both a precise measurement of the antineutrino spectrum from a highly-enriched uranium reactor and to probe eV-scale sterile neutrinos by searching for neutrino

Lithium-loaded Liquid Scintillator Production for the PROSPECT experiment

March 26, 2019
Author(s)
Hans Pieter Mumm, Denis E. Bergeron, Mark Tyra, Svetlana Nour, Jerome LaRosa
This work reports the production and characterization of lithium-loaded liquid scintillators (LiLS) for the Precision Reactor Oscillation and Spectrum Experiment (PROSPECT). Fifty-nine 90 L batches of LiLS (6Li mass fraction 0.082%0.001%) were produced and

Observation of antineutrinos from 235U fission by the PROSPECT experiment at HFIR

December 19, 2018
Author(s)
Mark A. Tyra, Denis E. Bergeron, Jerome J. LaRosa, Hans P. Mumm, Svetlana Nour
This letter reports the first observation of antineutrinos from the fission products of highly enriched 235U at the High Flux Isotope Reactor. PROSPECT, the Precision Reactor Oscillation and Spectrum Experiment, consists of a segmented 4 ton 6Li-doped

Phase stability and lithium loading capacity in a liquid scintillation cocktail

August 2, 2017
Author(s)
Denis E. Bergeron, Mark A. Tyra, Hans P. Mumm
Liquid scintillation cocktails loaded with neutron capture agents such as 6Li are used in both neutron and neutrino detectors. For detectors designed to operate over extended timespans, long-term stability can be a concern. We demonstrate the