Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Johannes Hubmayr (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 34 of 34

Dual-polarization-sensitive kinetic inductance detectors for balloon-borne, sub-millimeter polarimetry

March 20, 2014
Author(s)
James A. Beall, Dan Becker, Justus Brevik, Hsiao-Mei Cho, Gene C. Hilton, Kent D. Irwin, Dale Li, David P. Pappas, Jeffrey L. Van Lanen, Johannes Hubmayr
We are developing arrays of kinetic inductance detectors for sub-millimeter polarimetry that will be deployed on the BLAST balloon-borne instrument. The array is feedhorn-coupled, and each pixel contains two lumped-element kinetic inductance detectors

Improvements in silicon oxide dielectric loss for superconducting microwave detector circuits

January 24, 2013
Author(s)
Dale Li, Jason Austermann, James A. Beall, Daniel T. Becker, Hsiao-Mei Cho, Anna E. Fox, Nils Halverson, Jason Henning, Gene C. Hilton, Johannes Hubmayr, Jeffrey L. Van Lanen, John P. Nibarger, Michael D. Niemack, Kent D. Irwin
Dielectric loss in low-temperature superconducting integrated circuits can cause lower overall efficiency, particularly in the 90 to 220 GHz regime. We present a method to tune the dielectric loss for silicon oxide deposited by plasma-enhanced chemical

Dual-polarization sensitive MKIDs for far infrared astrophysics

December 12, 2012
Author(s)
Johannes Hubmayr, James A. Beall, Daniel T. Becker, Hsiao-Mei Cho, Brad Dober, Mark Devlin, Anna E. Fox, Dale Li, Michael D. Niemack, David P. Pappas, Leila R. Vale, Kent D. Irwin, Gene C. Hilton
We present the design for arrays of dual-polarization sensitive, superconducting sensors for far infrared astrophysics. Each pixel is feedhorn-coupled and consists of orthogonal, lumped-element kinetic inductance detectors (LEKIDs) both fabricated in the

An 84 Pixel All-Silicon Corrugated Feedhorn for CMB Measurements

December 8, 2011
Author(s)
John P. Nibarger, James A. Beall, Daniel T. Becker, Joseph W. Britton, Hsiao-Mei Cho, Anna E. Fox, Gene C. Hilton, Johannes Hubmayr, Dale Li, Kent D. Irwin, Jeffrey L. Van Lanen, Jeff McMahon, Ki Won Yoon
Silicon platelet corrugated feedhorn for cosmic microwave background (CMB) measurements in the mm wave (130 to 170 GHz) have been developed for deployment for the polarization sensitive upgrade to both the Atacama Cosmology Telescope (ACTpol) and the South

Al-Mn Transition Edge Sensors for Cosmic Microwave Background Polarimeters

November 22, 2010
Author(s)
Daniel R. Schmidt, Hsiao-Mei Cho, Johannes Hubmayr, Peter J. Lowell, Michael D. Niemack, Galen C. O'Neil, Joel N. Ullom, Ki W. Yoon, Kent D. Irwin, W L. Holzapfel, M Lueker, E M. George, E Shirokoff
Superconducting transition edge sensors (TES) require superconducting films with transition temperatures (Tc)and properties that can be tailored to the particular requirements of individual applications. We have been developing Al-Mn films with a tunable

Al-Mn transition edge sensors for cosmic microwave background polarimeters

November 22, 2010
Author(s)
Daniel R. Schmidt, Hsiao-Mei Cho, Johannes Hubmayr, Peter J. Lowell, Michael D. Niemack, Galen C. O'Neil, Joel N. Ullom, Ki W. Yoon, Kent D. Irwin
Superconducting transition edge sensors (TES) require superconducting films with transition temperatures (Tc)and properties that can be tailored to the particular requirements of individual applications. We have been developing Al-Mn films with a tunable
Was this page helpful?