Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by:

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 326 - 350 of 469

Residual stability of a fiber-based frequency comb

May 6, 2007
Author(s)
William C. Swann, Ian R. Coddington, Luca Lorini, Jason Stalnaker, J. C. Bergquist, Scott Diddams, Nathan R. Newbury
Abstract: We present measurements of the residual frequency stability across a fiber frequency comb by comparison through a Ti:sapphire frequency comb. We find 6 x 10 -17 stability at one second and 1 x 10 -18 at 1000 seconds.

Coherent optical link over hundreds of metres and hundreds of terahertz with subfemtosecond timing jitter

May 1, 2007
Author(s)
Ian R. Coddington, William C. Swann, Luca Lorini, J. C. Bergquist, K Feder, Y. Le Coq, Jeffrey W. Nicholson, C. W. Oates, Qudsia Quraishi, Paul S. Westbrook, Scott Diddams, Nathan R. Newbury
Recent developments in stabilized lasers have resulted in ultrastable optical oscillators with spectral purities below 1 Hz refs 1-6. These oscillators are not transportable at present and operate at a single frequency. To realize their full potential, a

Radian-level coherent optical links over 100's of meters and 100's of terahertz

January 18, 2007
Author(s)
Ian R. Coddington, Qudsia Quraishi, Luca Lorini, William C. Swann, J. C. Bergquist, C. W. Oates, Scott Diddams, Nathan R. Newbury
We demonstrate coherent transfer of optical signals with radian level noise (in a 25 MHz bandwidth) through a series of laser systems spanning from 657 nm to 1550 nm over several hundred meter distances.

Fiber-laser frequency combs with subhertz relative linewidths

October 15, 2006
Author(s)
William C. Swann, John J. McFerran, Ian R. Coddington, Nathan R. Newbury, Ingmar Hartl, Martin E. Fermann, Paul S. Westbrook, Jeffrey W. Nicholson, K Feder, Carston Langrock, Martin M. Fejer
We investigate the comb linewidths of self-referenced, fiber-laser-based frequency combs by measuring the heterodyne beat signal between two independent frequency combs that are phase locked to a common cw optical reference. We demonstrate that the optical

Fiber Frequency Combs: Development and Applications

September 19, 2006
Author(s)
Nathan R. Newbury, William C. Swann, Ian R. Coddington, John J. McFerran
The output of a femtosecond fiber laser provides a comb of lines in frequency space that can be phase-locked to either a microwave or optical reference to form a stable frequency comb. We discuss the basic configuration of fiber laser-based frequency combs

Elimination of pump-induced frequency jitter on fiber-laser frequency combs

July 1, 2006
Author(s)
John J. McFerran, William C. Swann, Brian R. Washburn, Nathan R. Newbury
Optical frequency combs generated by femtosecond fiber lasers typically exhibit significant frequency noise that causes broad optical linewidths, particularly in the comb wings and in the carrier-envelope offset frequency (fceo) signal. We show these broad

Reducing the linewidth of fiber-laser frequency combs

June 30, 2006
Author(s)
Nathan R. Newbury, John J. McFerran, William C. Swann
Fiber laser-based frequency combs typically exhibit broad optical linewidths, particularly in the wings. These broadened linewidths originate from white amplitude noise on the pump laser, which can be eliminated to achieve sub-Hz offset frequency

Optical and microwave frequency synthesis with an integrated fiber frequency comb

June 5, 2006
Author(s)
Ingmar Hartl, Martin E. Fermann, William C. Swann, John J. McFerran, Ian R. Coddington, Qudsia Quraishi, Scott Diddams, Nathan R. Newbury, Carston Langrock, Martin M. Fejer, Paul S. Westbrook, Jeffrey W. Nicholson, K Feder
We demonstrate optical coherence over a broad spectral range of two independent fiber frequency combs. Additionally, we demonstrate microwave stability of better than 2x10 -14 in 1 second for an optically integrated fiber frequency comb.

Frequency-Resolved Coherent LIDAR using a Femtosecond Fiber Laser

May 21, 2006
Author(s)
William C. Swann, Nathan R. Newbury
We present a frequency comb-based, frequency-resolved coherent LIDAR (FReCL) that provides higher performance than that of conventional pulsed range/Doppler LIDARs, dramatically reduces local oscillator timing requirements, and compensates for path

Optical and microwave frequency synthesis with an integrated fiber frequency comb

May 21, 2006
Author(s)
L Hartl, Martin E. Fermann, W Swann, John J. McFerran, Ian R. Coddington, Qudsia Quraishi, Scott A. Diddams, Nathan R. Newbury, Carston Langrock, M M. Fejer, P. S. Westbrook, Jeffrey W. Nicholson, K Feder
We demonstrate optical coherence over a broad spectral range of two independent fiber frequency combs. Additionally, we demonstrate microwave stability of better than 2x10 -14 in 1 second for an optically integrated fiber frequency comb.
Was this page helpful?