Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Joe W. Magee (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 25 of 109

Reference materials for phase equilibrium studies. 2. Solid-liquid equilibria (IUPAC Technical Report)

January 11, 2023
Author(s)
Ala Bazyleva, William E. Acree, Vladimir Diky, Glenn T. Hefter, Johan Jacquemin, M. Clara F. Magalhaes, Joe W. Magee, Kirk Nordstrom, John O'Connell, James D. Olson, Ilya Polishuk, Kurt A. G. Schmidt, John M. Shaw, J. P. Martin Trusler, Ronald D. Weir
This article is the second of three projected IUPAC Technical Reports on reference materials for phase equilibrium studies. The goal of this project was to select reference systems with critically evaluated property values for the verification of

Towards improved FAIRness of the ThermoML Archive

February 28, 2022
Author(s)
Demian Riccardi, Zachary Trautt, Ala Bazyleva, Eugene Paulechka, Vladimir Diky, Joe W. Magee, Andrei F. Kazakov, Scott Townsend, Chris Muzny
The ThermoML archive is a subset of Thermodynamics Research Center (TRC) data holdings corresponding to cooperation between NIST TRC and five journals: Journal of Chemical Engineering and Data (ISSN: 0021-9568), The Journal of Chemical Thermodynamics (ISSN

Study of Isochoric Specific Heat Capacity Measurements for Liquid Isobutane

October 12, 2021
Author(s)
Hiroyuki Miyamoto, Hiroshi Kitajima, Noboru Kagawa, Joe W. Magee, Seizo Tsuruno, Koichi Watanabe
Isobutane is one of the most promising alternative refrigerants because of its zero ODP and negligible GWP. It can be used not only as a pure component but also as a component of binary or ternary mixture refrigerants. To design and evaluate cycle

Reference Materials for Phase Equilibrium Studies. 1. Liquid-Liquid Equilibria (IUPAC Technical Report)

July 8, 2021
Author(s)
Ala Bazyleva, William E. Acree, Jr., Robert D. Chirico, Vladimir Diky, Glenn T. Hefter, Johan Jacquemin, Joe W. Magee, John P. O'Connell, James D. Olson, Ilya Polishuk, Kurt Schmidt, John M. Shaw, J. P. M. Trusler, Ronald D. Weir
This article is the first of three projected IUPAC Technical Reports resulting from IUPAC Project 2011-037-2-100 (Reference Materials for Phase Equilibrium Studies). The goal of that project was to select reference systems with critically evaluated

Liquid Viscosity and Surface Tension of n-Hexane, n-Octane, n-Decane, and n-Hexadecane up to 573 K by Surface Light Scattering (SLS)

August 16, 2019
Author(s)
Tobias Klein, Shaomin Yan, Junwei Cui, Joe W. Magee, Kenneth Kroenlein, Michael H. Rausch, Thomas M. Koller, Andreas P. Froba
In the present study, the simultaneous and accurate determination of liquid viscosity and surface tension of the n-alkanes n-hexane (n-C6H14), n-octane (n-C8H18), n-decane (n-C10H22), and n-hexadecane (n-C16H34) by surface light scattering (SLS) in

Internal Pressure and Internal Energy of Saturated and Compressed Phases

September 12, 2017
Author(s)
Joe W. Magee, Ilmutdin Abdulagatov, Nikolai Polikhronidi, Rabiyat Batyrova
Following a critical review of the field, a comprehensive analysis is provided of the internal pressure of fluids and fluid mixtures and its determination in a wide range of temperatures and pressures. Further, the physical meaning is discussed of the

Yang-Yang Critical Anomaly

September 12, 2017
Author(s)
Joe W. Magee, Ilmutdin Abdulagatov, Nikolai Polikhronidi, Rabiyat Batyrova
Following a critical review of related research, a method is described to evaluate the Yang-Yang critical anomaly strength function, , from experimental measurements of two-phase liquid ( ) and vapor ( ) isochoric heat capacities and liquid ( ) and vapor (

ThermoData Engine (TDE) Version 10.2 (Pure Compounds, Binary Mixtures, Ternary Mixtures, and Chemical Reactions): NIST Standard Reference Database 103b

August 31, 2017
Author(s)
Vladimir Diky, Chris D. Muzny, Alexander Y. Smolyanitsky, Ala Bazyleva, Robert D. Chirico, Joe W. Magee, Yauheni Paulechka, Andrei F. Kazakov, Scott A. Townsend, Eric W. Lemmon, Michael D. Frenkel, Kenneth G. Kroenlein
The ThermoData Engine is a software expert system implementing the concept of dynamic data evaluation for thermophysical and thermochemical properties of, primarily, organic compounds. This new release provides a substantially expanded database of

Thermodynamic Properties at Saturation Derived from Experimental Two-Phase Isochoric Heat Capacity of 1-Hexyl-3-methylimidazolium bis[trifluoromethyl)sulfonyl]imide

October 27, 2016
Author(s)
Joe W. Magee, N. G. Polikhronidi, Rabiyat G. Batyrova, I M. Abdulagatov, J. Wu
New measurements are reported for the isochoric heat capacity of the ionic liquid substance 1- hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([C6mim][NTf2]). These measurements extend the ranges of our earlier study [N.G. Polikhronidi et al

ThermoData Engine (TDE) Version 10.1 (Pure Compounds, Binary Mixtures, Ternary Mixtures, and Chemical Reactions): NIST Standard Reference Database 103b

July 14, 2016
Author(s)
Vladimir Diky, Chris D. Muzny, Alexander Y. Smolyanitsky, Ala Bazyleva, Robert D. Chirico, Joe W. Magee, Yauheni Paulechka, Andrei F. Kazakov, Scott A. Townsend, Eric W. Lemmon, Michael D. Frenkel, Kenneth G. Kroenlein
The ThermoData Engine is a software expert system implementing the concept of dynamic data evaluation for thermophysical and thermochemical properties of, primarily, organic compounds. This new release provides a substantially expanded database of

ThermoData Engine (TDE) Version 10 (Pure Compounds, Binary Mixtures, Ternary Mixtures, and Chemical Reactions): NIST Standard Reference Database 103b

December 31, 2015
Author(s)
Vladimir Diky, Chris Muzny, Alexander Smolyanitsky, Ala Bazyleva, Robert D. Chirico, Joe W. Magee, Eugene Paulechka, Andrei F. Kazakov, Scott Townsend, Eric Lemmon, Michael D. Frenkel, Kenneth Kroenlein
The ThermoData Engine is a software expert system implementing the concept of dynamic data evaluation for thermophysical and thermochemical properties of, primarily, organic compounds. This new release provides a substantially expanded database of

ThermoData Engine (TDE) Version 9.0 (Pure Compounds, Binary Mixtures, Ternary Mixtures, and Chemical Reactions); NIST Standard Reference Database 103b

December 31, 2014
Author(s)
Michael D. Frenkel, Robert D. Chirico, Vladimir Diky, Kenneth Kroenlein, Chris Muzny, Andrei F. Kazakov, Joe W. Magee, Ilmutdin M. Abdulagatov, Eric Lemmon, Jeongwon Kang
The ThermoData Engine is a software expert systems implementing the concept of dynamic data evaluation. This new release includes implementation of three important new features: (1)new parameters for the NIST "modified UNIFAC" method for predictions of

Algorithmic Framework for Quality Assessment of Phase Equilibrium Data

June 3, 2014
Author(s)
Vladimir Diky, Robert D. Chirico, Joe W. Magee, Chris D. Muzny, Andrei F. Kazakov, Kenneth G. Kroenlein, Michael D. Frenkel, Jeongwon J. Kang
Data quality assessment procedures for various types of phase equilibrium data are reviewed and analyzed. Experimental data for vapor-liquid equilibrium (VLE), liquid-liquid equilibrium (LLE), solid-liquid equilibrium (SLE), infinite dilution activity

ThermoData Engine (TDE) Version 8.0 (Pure Compounds, Binary Mixtures, Ternary Mixtures, and Chemical Reactions); NIST Standard Reference Database 103b

December 31, 2013
Author(s)
Michael D. Frenkel, Robert D. Chirico, Vladimir Diky, Kenneth Kroenlein, Chris Muzny, Andrei F. Kazakov, Joe W. Magee, Ilmutdin M. Abdulagatov, Eric Lemmon
The ThermoData Engine is a software expert systems implementing the concept of dynamic data evaluation. This new release includes four important new features. (1) Implementation of the Peng-Robinson EOS for mixtures. (2) Evaluation of ideal-gas entropies

Ionic Liquids Database - ILThermo (v2.0)

December 16, 2013
Author(s)
Andrei F. Kazakov, Joe W. Magee, Robert D. Chirico, Vladimir Diky, Kenneth G. Kroenlein, Chris D. Muzny, Michael D. Frenkel
ILThermo is a web-based ionic liquids database available free to the public. It aims to provide users worldwide with up-to-date information on publications of experimental investigation on ionic liquids, including numerical values of chemical and physical

ThermoData Engine (TDE): Software Implementation of the Dynamic Data Evaluation Concept. 9. Extensible Thermodynamic Constraints for Pure Compounds and New Model Developments

November 18, 2013
Author(s)
Vladimir Diky, Robert D. Chirico, Chris D. Muzny, Andrei F. Kazakov, Kenneth G. Kroenlein, Joe W. Magee, Ilmutdin M. Abdulagatov, Michael D. Frenkel
ThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported in this journal. The present article describes the background and implementation for new additions in latest release of TDE. Advances

Improvement of Quality in Publication of Experimental Thermophysical Property Data: Challenges, Assessment Tools, Global Implementation, and Online Support

September 6, 2013
Author(s)
Robert D. Chirico, Michael D. Frenkel, Joe W. Magee, Vladimir Diky, Chris D. Muzny, Andrei F. Kazakov, Kenneth G. Kroenlein, Ilmutdin M. Abdulagatov, William E. Acree, Jr., Joan F. Brennecke, Paul L. Brown, Peter T. Cummings, Theodoor W. de Loos, Daniel G. Friend, Anthony R. Goodwin, Lee D. Hansen, William M. Haynes, Nobuyoshi Koga, Andreas Mandelis, K N. Marsh, Paul M. Mathias, Clare McCabe, O'Connell J. P., Agilio Padua, Vicente Rives, Christoph Schick, Martin P. Trusler, Sergey Vyazovkin, Ron D. Weir, Jiangtao Wu
This article describes a 10-year cooperative effort between the U. S. National Institute of Standards and Technology (NIST) and five major journals in the field of thermophysical and thermochemical properties to improve the quality of published reports of

ThermoData Engine (TDE): Software Implementation of the Dynamic Data Evaluation Concept. 8. Properties of Material Streams and Solvent Design

December 3, 2012
Author(s)
Vladimir Diky, Robert D. Chirico, Chris D. Muzny, Andrei F. Kazakov, Kenneth G. Kroenlein, Joe W. Magee, Ilmutdin M. Abdulagatov, Carlos A. Diaz-Tovar, Jeong W. Kang, Rafiqul Gani, Michael D. Frenkel
ThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported in this journal. The present paper describes the first application of this concept to the evaluation of thermophysical properties for

ThermoData Engine (TDE) Version 7.0 (Pure compounds, Binary Mixtures, Ternary Mixtures, Chemical Reactions) Standard Reference Database 103b

June 11, 2012
Author(s)
Michael D. Frenkel, Robert D. Chirico, Vladimir Diky, Chris D. Muzny, Andrei F. Kazakov, Joe W. Magee, Ilmutdin M. Abdulagatov, Kenneth G. Kroenlein, Carlos A. Diaz-Tovar, Jeong W. Kang, Rafiqul Gani
The first full-scale software implementation of the dynamic data evaluation concept {ThermoData Engine (TDE)} is described for thermophysical and thermochemical property data. This concept requires the development of large electronic databases capable of

ThermoData Engine (TDE): Software Implementation of the Dynamic Data Evaluation Concept. 7. Ternary Mixtures

January 27, 2012
Author(s)
Vladimir Diky, Robert D. Chirico, Chris D. Muzny, Andrei F. Kazakov, Kenneth G. Kroenlein, Joe W. Magee, Ilmutdin M. Abdulagatov, Jeongwon J. Kang, Michael D. Frenkel
ThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported in this journal. The present paper describes the first application of this concept to the evaluation of thermophysical properties for