Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Julia Scherschligt (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 50 of 90

NIST on a Chip: Photonic and Quantum-Based Sensors for Measurements of Pressure, Vacuum, Temperature and Beyond!

April 29, 2021
Author(s)
Jay H. Hendricks, Zeeshan Ahmed, Daniel Barker, Stephen Eckel, James A. Fedchak, Nikolai Klimov, Julia Scherschligt
At the core of the NIST on a Chip (NoAC) program is the idea that measurement technology can be developed to enable metrology to be done "outside the National Metrology Institute" by virtue of deployed and often miniaturized standards (that can also serve

Outgassing rate comparison of seven geometrically similar vacuum chambers of different materials and heat treatments

April 23, 2021
Author(s)
James A. Fedchak, Julia Scherschligt, Sefer Avdiaj, Daniel Barker, Stephen Eckel, Ben Bowers, Scott O'Connell, Perry Henderson
We have measured the water and hydrogen outgassing rates of seven vacuum chambers of identical geometry but constructed of different materials and heat treatments. Chambers of five different materials were tested: 304L, 316L, and 316LN stainless steels

Automated Piston Gauge Calibration System.

April 22, 2021
Author(s)
Julia Scherschligt, Yuanchao Yang, Katie M. Schlatter, Robert G. Driver, Christina D. Cross, John S. Quintavalle
Piston gauges or pressure balances are important primary standards for the realization of the SI unit of pressure, the Pascal. The National Institute of Standards and Technology (NIST) operates and maintains a calibration service for these devices, and has

Note: A Bitter-type electromagnet for complex atomic trapping and manipulation

February 12, 2021
Author(s)
Jacob L. Siegel, Daniel Barker, James A. Fedchak, Julia Scherschligt, Stephen Eckel
We create a pair of symmetric Bitter-type electromagnet assemblies capable of producing multiple field configurations including uniform magnetic fields, spherical quadruple traps, or Ioffe-Pritchard magnetic bottles. Unlike other designs, our coil allows

Note: A Radio Frequency Voltage-Controlled Current Source for Quantum Spin Manipulation

October 19, 2020
Author(s)
Daniel S. Barker, Alessandro Restelli, James A. Fedchak, Julia K. Scherschligt, Stephen P. Eckel
We present a design for a wide-bandwidth, voltage-controlled current source that is easily integrated with radiofrequency magnetic field coils. Our design uses current feedback to compensate for the frequency-dependent impedance of a radiofrequency antenna

A wide-bandwidth, high-power radio-frequency driver for acousto-optic and electro-optic devices

August 6, 2019
Author(s)
Daniel S. Barker, Neal C. Pisenti, Alessandro Restelli, Julia K. Scherschligt, James A. Fedchak, Gretchen K. Campbell, Stephen P. Eckel
We present a design for a general-purpose radio-frequency amplifier circuit that is suitable for driving acousto-optic and electro-optic devices. Our design uses telecom amplifiers to achieve power output > 1 W over a 10 MHz to 1.1 GHz frequency range, and

Nuclear-Spin Dependent Parity Violation in Optically Trapped Polyatomic Molecules

July 3, 2019
Author(s)
Eric B. Norrgard, Daniel S. Barker, Stephen P. Eckel, James A. Fedchak, Nikolai N. Klimov, Julia K. Scherschligt
We investigate using optically trapped linear polyatomic molecules as probes of nuclear spin- dependent parity violation. The presence of closely spaced, opposite-parity $\ell$-doublets is a general feature of such molecules, allowing parity-violation

A single-beam slower and magneto-optical trap using a nanofabricated grating

June 11, 2019
Author(s)
Daniel S. Barker, Eric B. Norrgard, Nikolai N. Klimov, James A. Fedchak, Julia K. Scherschligt, Stephen P. Eckel
We demonstrate a compact (0.25 L) system for laser cooling and trapping atoms from a heated dispenser source. Our system uses a nano-fabricated diffraction grating to generate a magneto- optical trap (MOT) using a single input laser beam. An aperture in

Light-induced atomic desorption of lithium

October 8, 2018
Author(s)
Daniel S. Barker, Eric B. Norrgard, Julia K. Scherschligt, James A. Fedchak, Stephen P. Eckel
We demonstrate loading of a Li magneto-optical trap using light-induced atomic desorption. The magneto-optical trap confines up to approximately 10000 lithium atoms with loading rates up to 4000 atoms/s. We study the Li desorption rate as a function of the

Challenges to miniaturizing cold atom technology for deployable vacuum metrology

September 14, 2018
Author(s)
Stephen P. Eckel, Daniel S. Barker, James A. Fedchak, Nikolai N. Klimov, Eric B. Norrgard, Julia K. Scherschligt, Constantinos Makrides, Eite Tiesinga
Cold atoms are excellent metrological tools; they currently realize SI time and, soon, SI pressure in the ultra-high (UHV) and extreme high vacuum (XHV) regimes. The development of primary, vacuum metrology based on cold atoms currently falls under the
Was this page helpful?