Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Daniel S. Hussey (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 50 of 111

Effects of Cathode Corrosion on Through-Plane Water Transport in Proton Exchange Membrane Fuel Cells

April 21, 2021
Author(s)
Daniel S. Hussey, Joseph Fairweather, Dusan Spernjak, Adam Weber, David Harvey, Silvia Wessell, David L. Jacobson, Kateryna Artyushkova, Rangachary Mukundan, Rodney Borup
The corrosion of carbon in the electrode supports of proton-exchange-membrane fuel cells leads to electrode collapse, reduced active catalyst area, and increased surface hydrophilicity. While these effects have been linked to performance degradation over

Far-field interference of a neutron white beam and the applications to noninvasive phase-contrast imaging

April 21, 2021
Author(s)
Michael G. Huber, Daniel S. Hussey, Muhammad D. Arif, David L. Jacobson, Jacob LaManna, Wakana Ueno, Han Wen, Dmitry Pushin, Dusan Sarenac, David Cory, Houxun Miao, Takenao Shinohara, Joseph Parker
The phenomenon of interference plays a crucial role in the field of precision measurement science. Waveparticle duality has expanded the well-known interference effects of electromagnetic waves to massive particles. The majority of the wave-particle

High-resolution neutron depolarization microscopy of the ferromagnetic transitions inNi3Al and HgCr2Se4 under pressure

April 21, 2021
Author(s)
Daniel S. Hussey, Muhammad Abir, B. Khaykovich, C. Pfleiderer, Pau Jorba, Marc Seifert, Michael Schulz
We performed spatially resolved imaging of ferromagnetic transitions in Ni3Al and HgCr2Se4 crystals. These neutron depolarization measurements discovered bulk magnetic inhomogeneities in the ferromagnetic transition temperature with the spatial resolution

Multi-scale analyses of constituent phases in a trip-assisted duplex stainless steel by electron backscatter diffraction, in situ neutron diffraction, and energy selective neutron imaging

April 21, 2021
Author(s)
Daniel S. Hussey, Wanchuck Woo, Jongyul Kim
Micrometer to centimeter scale analyses of the crystalline phase volume fractions in a trip- assisted duplex stainless steel were performed as a function strain using electron backscatter diffraction (EBSD), in situ neutron diffraction, and energy

Neutron Imaging of Laser Melted SS316 Test Objects with Spatially Resolved Small Angle Neutron Scattering

April 21, 2021
Author(s)
Daniel S. Hussey, Adam J. Brooks, Caroline G. Lowery, Gerald L. Knapp, Bridget E. Cadigan, Shengmin Guo, Leslie G. Butler
A novel neutron far field interferometer is explored for sub-micron porosity detection in laser sintered SS316 test objects. The results shown are images and volumes of the first quantitative neutron dark-field tomography at various autocorrelation lengths

Thermal And Visual Observation Of Water And Acetone Oscillating Heat Pipes

April 21, 2021
Author(s)
Daniel S. Hussey, David L. Jacobson, Hongbin Ma, R. A. Winholtz, Corey Wilson, Corey Borgmeyer
Identical oscillating heat pipes (OHP) charged separately with water and acetone were observed thermally and visually at varying condenser temperatures and heat inputs. Neutron radiography allowed visualization of hydrogen rich liquid water and acetone

Thick Sintered Electrode Lithium-Ion Battery Discharge Simulations: Incorporating Lithiation-Dependent Electronic Conductivity and Lithiation Gradient due to Charge Cycle

April 21, 2021
Author(s)
Daniel S. Hussey, Jacob LaManna, David L. Jacobson, Gary Koenig
In efforts to increase the energy density of lithium-ion batteries, researchers have attempted to both increase the thickness of battery electrodes and increase the relative fractions of active material. One system that has both of these attributes are

Three Phase-Grating Moire Neutron Interferometer for Large InterferometerArea Applications

April 21, 2021
Author(s)
Michael G. Huber, D. Sarenac, D. A. Pushin, Houxun Miao, Daniel S. Hussey, D G. Cory, Muhammad D. Arif, David L. Jacobson, Jacob LaManna, Ben Heacock
We demonstrate a three phase-grating neutron interferometer as a robust candidate for large area interferometry applications and characterization of materials. This novel far- eld moire technique allows for broad wavelength acceptance and relaxed

Electrolyte Layer Gas Triggers Cathode Potential Instability in CO2 Electrolyzers

February 1, 2021
Author(s)
Kevin Krause, Jason K. Lee, ChungHyuk Lee, Hisan W. Shafaque, Pascal J. Kim, Kieran F. Fahy, Pranay Shrestha, Jacob LaManna, Elias Baltic, David Jacobson, Daniel Hussey, Aimy Bazylak
Electrolytic carbon dioxide (CO2) reduction is becoming increasingly promising for managing anthropogenic CO2 emissions; however, issues related to unstable performance and ineffective gas management are still not fully accounted for in the field. Here, we

Water Migration and Swelling in Engineered Barrier Materials for Radioactive Waste Disposal

January 25, 2021
Author(s)
Joanna McFarlane, Lawrence M Anovitz, Michael C. Cheshire, Victoria H. DiStefano, Hassina Z. Bilheux, Jean-Christophe Bilheux, Luke L. Daemen, Richard E. Hale, Ronald L. Howard, A. J. Ramirez-Cuesta, Louis J. Santodonato, Markus Bleuel, Daniel S. Hussey, David L. Jacobson, Jacob LaManna, Edmund Perfect, Logan Qualls
Deep underground repositories are needed to isolate radioactive waste from the biosphere. Bentonite is an integral component of many multibarrier repository systems. Information on the hydraulic behavior of bentonite is needed for modeling the long-term

The interactive effect of heat and mass transport on water condensation in the gas diffusion layer of a proton exchange membrane fuel cell

December 31, 2020
Author(s)
Po-Ya A. Chuang, Md A. Rahman, Felipe Mojica, Daniel S. Hussey, David L. Jacobson, Jacob LaManna
Despite recent advancement in fuel cell technology, significant challenges remain in achieving high power density operation to meet the stringent targets of performance, durability and cost. This is due to the lack of fundamental understanding in

Spatially graded porous transport layers for gas evolving electrochemical energy conversion: High performance polymer electrolyte membrane electrolyzers

December 15, 2020
Author(s)
Jason K. Lee, ChungHyuk Lee, Kieran F. Fahy, Pascal J. Kim, Jacob LaManna, Eli Baltic, Daniel S. Hussey, David L. Jacobson, A Gago, S Kolb, K Friedrich, Aimy Bazylak
Decarbonizing society's energy infrastructure is foundational for a sustainable future and can be realized by harnessing renewable energy for clean hydrogen and on-demand power with fuel cells. Here, we elucidate how graded porous transport layers (PTLs)

Boosting Membrane Hydration for High Current Densities in Membrane Electrode Assembly CO2 Electrolysis

November 25, 2020
Author(s)
Hisan W. Shafaque, ChungHyuk Lee, Kieran F. Fahy, Jason K. Lee, Jacob LaManna, Eli Baltic, Daniel S. Hussey, David L. Jacobson, Aimy Bazylak
Despite the advantages of CO2 electrolyzers, efficiency losses due to mass and ionic transport across the membrane electrode assembly (MEA) are critical bottlenecks for commercial-scale implementation. In this study, more efficient electrolysis of CO2 was

NIST NeXT: a system for truly simultaneous neutron and X-ray tomography

September 14, 2020
Author(s)
Jacob LaManna, Daniel S. Hussey, Victoria H. DiStefano, Eli Baltic, David L. Jacobson
Neutrons and X-rays provide excellent complementary, nondestructive probes to understand internal structure of systems across engineering and material science. With its sensitivity to hydrogen, neutrons excel at separating fluids, such as water or oil

Electric-field imaging using polarized neutrons

September 10, 2020
Author(s)
Y.- Y. Jau, Daniel S. Hussey, Thomas R. Gentile, Wangchun Chen
We experimentally demonstrate that electrically neutral particles, neutrons, can be used to directly visualize the electrostatic field inside a target volume that can be physically isolated or occupied. Electric field images are obtained using a spin

Accelerating Bubble Detachment in Porous Transport Layers with Patterned Through-Pores

September 9, 2020
Author(s)
Jason K. Lee, ChungHyuk Lee, Kieran F. Fahy, Pascal J. Kim, Kevin Krause, Jacob LaManna, Eli Baltic, Daniel S. Hussey, David L. Jacobson, Aimy Bazylak
Mass transport losses ultimately suppress gas evolving electrochemical energy conversion technologies, such as fuel cells and carbon dioxide electrolyzers, from reaching the high current densities needed to realize commercial success. In this work, we
Was this page helpful?