NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Spatially graded porous transport layers for gas evolving electrochemical energy conversion: High performance polymer electrolyte membrane electrolyzers
Published
Author(s)
Jason K. Lee, ChungHyuk Lee, Kieran F. Fahy, Pascal J. Kim, Jacob LaManna, Eli Baltic, Daniel S. Hussey, David L. Jacobson, A Gago, S Kolb, K Friedrich, Aimy Bazylak
Abstract
Decarbonizing society's energy infrastructure is foundational for a sustainable future and can be realized by harnessing renewable energy for clean hydrogen and on-demand power with fuel cells. Here, we elucidate how graded porous transport layers (PTLs) are instrumental for high performance gas evolving electrochemical energy conversion devices, with an emphasis on polymer electrolyte membrane (PEM) electrolyzers. Spatially graded PTLs fabricated by vacuum plasma spraying are examined via in operando neutron imaging, electrochemical characterization, and pore network modelling. The results reveal the staggering benefits of positioning the lower porosity region adjacent to the catalyst layer and the higher porosity region adjacent to the flow field, which lead to current densities up to 4.5 A/cm2 with a 29 % reduction in cell potential, 38 % reduction in mass transport overpotential, and 50 % reduction in PTL gas saturation. The liquid water permeability of the PTL also enhances by an order of magnitude, with a drastic reduction in gas saturation adjacent to the catalyst layer. Custom graded PTLs have the potential to transform performance levels for a broad array of gas evolving electrochemical energy conversion devices.
Lee, J.
, Lee, C.
, Fahy, K.
, Kim, P.
, LaManna, J.
, Baltic, E.
, Hussey, D.
, Jacobson, D.
, Gago, A.
, Kolb, S.
, Friedrich, K.
and Bazylak, A.
(2020),
Spatially graded porous transport layers for gas evolving electrochemical energy conversion: High performance polymer electrolyte membrane electrolyzers, Energy Conversion and Management, [online], https://doi.org/10.1016/j.enconman.2020.113545, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=930394
(Accessed October 13, 2025)