Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Vincent K. Shen (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 76 - 100 of 152

Connection between thermodynamics and dynamics of simple fluids in pores: impact of fluid-fluid interaction range and fluid-solid interaction strength

July 5, 2017
Author(s)
William P. Krekelberg, Daniel W. Siderius, Vincent K. Shen, Thomas M. Truskett, Jeffrey R. Errington
Using molecular simulations, we investigate how the range of fluid-fluid (adsorbate-adsorbate) interactions and the strength of fluid-solid (adsorbate-adsorbent) interactions impact the strong connection between distinct adsorptive regimes and distinct

Molecular Dynamics Simulation of Trimer Self-Assembly Under Shear

March 6, 2017
Author(s)
Raymond D. Mountain, Harold Hatch, Vincent K. Shen
The self-assembly of patchy trimer particles with one attractive bead and two repulsive beads is investigated with nonequilibrium molecular dynamics simulations in the presence of a velocity gradient, as would be produced by the application of a shear

Predicting low-temperature free energy landscapes with flat-histogram Monte Carlo methods

February 21, 2017
Author(s)
Nathan Mahynski, Marco A. Blanco Medina, Jeffrey R. Errington, Vincent K. Shen
We present a method of predicting the free energy landscape of fluids at low temperatures from flat-histogram grand canonical Monte Carlo simulations performed at higher ones. We illustrate our approach for both pure and multicomponent systems using two

Tuning flexibility to control selectivity in soft porous crystals

January 31, 2017
Author(s)
Nathan Mahynski, Vincent K. Shen
We use flat-histogram Monte Carlo simulations to study how changing the flexibility of soft porous crystals (SPCs) affects their selective adsorption of a binary, size-asymmetric supercritical fluid. Specifically, we consider mesoporous SPCs which have

Modulus--Pressure Equation for Confined Fluids

October 28, 2016
Author(s)
Daniel W. Siderius, Gennady Y. Gor, Vincent K. Shen, Noam Bernstein
Ultrasonic experiments allow one to measure the elastic modulus of bulk solid or fluid samples. Recently such experiments have been carried out on fluid-saturated nanoporous glass to probe the modulus of a confined fluid. In our previous work (J. Chem

Depletion-Driven Crystallization of Cubic Colloids Sedimented on a Surface

May 19, 2016
Author(s)
Harold W. Hatch, William P. Krekelberg, Steven D Hudson, Vincent K. Shen
Cubic colloids, sedimented on a surface and immersed in a solution of depletant molecules, were modeled with a family of shapes which smoothly varies from squares to circles. Using Wang-Landau simulations with expanded ensembles, we observe the formation

Self-Assembly of Trimer Colloids: Effect of shape and interaction range

April 5, 2016
Author(s)
Harold W. Hatch, Seung Y. Yang, Jeetain Mittal, Vincent K. Shen
Trimers with one attractive bead and two repulsive beads, similar to recently synthesized trimer patchy colloids, were simulated with flat-histogram Monte Carlo methods to obtain the stable self-assembled structures for different shapes and interaction

Adsorption, X-ray Diffraction, Photoelectron, and Atomic Emission Spectroscopy Benchmark Studies for the Eighth Industrial Fluid Properties Simulation Challenge

January 31, 2016
Author(s)
Daniel Siderius, Vincent K. Shen, Raymond D. Mountain, Richard B. Ross, David B. Aeschliman, Riaz Ahmad, John K. Brennan, Myles L. Brostrom, Kevin A. Frankel, Jonathan D. Moore, Joshua D. Moore, Derrick M. Poirier, Matthias Thommes, Nathan E. Schultz, Kenneth D. Smith
The primary goal of the eighth industrial fluid properties simulation challenge was to test the ability of molecular simulation methods to predict the adsorption of organic adsorbates in activated carbon materials. The challenge focused, in particular, on

The Eighth Industrial Fluid Properties Simulation Challenge

January 31, 2016
Author(s)
Daniel Siderius, Vincent K. Shen, Raymond D. Mountain, Nathan E. Schultz, Riaz Ahmad, John K. Brennan, Kevin A. Frankel, Jonathan D. Moore, Richard B. Ross, Matthias Thommes, Kenneth D. Smith
The goal of the eighth industrial fluid properties simulation challenge was to test the ability of molecular simulation methods to predict the adsorption of organic adsorbates in activated carbon materials. In particular, the eighth challenge focused on