Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Christopher Soles (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 51 - 75 of 335

Study of Direct Lithiation of Thin Si Membranes with Spatially-Correlative Low Energy Focused Li Ion Beam and Analytical Electron Microscopy Techniques

November 22, 2016
Author(s)
Vladimir P. Oleshko, Christopher L. Soles, Kevin A. Twedt, J J. McClelland
Understanding and controlling defect interactions and transport properties of Li ions in silicon is crucial for the development of emerging technologies in energy storage and microelectronics. With a theoretical energy storage capacity of ~4200 mAhg-1

Elemental Sulfur and Molybdenum Disulfide Composites for Li-S Batteries with Long Cycle Life and High-Rate Capability

May 12, 2016
Author(s)
Vladimir P. Oleshko, Christopher L. Soles, Philip T. Dirlam, Jungjin Park, Adam G. Simmonds, Kenneth Domanik, Kookheon Char, Richard Glass, Nicola Pinna, Yung-Eun Sung
The development of next-generation battery systems beyond Li-ion technology remains a crucial challenge in accommodating the evolving energy storage demands presented by electric vehicles and efficient storage of energy from intermittent renewable sources

Structural origins of enhanced capacity retention in novel copolymerized sulfur-based composite cathodes for high-energy density Li-S batteries

September 17, 2015
Author(s)
Vladimir P. Oleshko, Jenny J. Kim, Jennifer L. Schaefer, Steven D. Hudson, Christopher L. Soles, Adam Simmonds, Jared Griebel, Kookheon Char, Jeff Pyun
Poly(sulfur-random-(1,3-diisopropenylbenzene) (poly(S-r-DIB)) copolymers synthesized via inverse vulcanization form high molecular mass electrochemically active polymers capable of realizing enhanced capacity retention (1005 mAh/g at 100 cycles) and

Understanding the Decreased Segmental Dynamics of Supported Thin Polymer Films Reported by Incoherent Neutron Scattering

February 10, 2015
Author(s)
Changhuai Ye, Clinton G. Wiener, Madhu Sudan Tyagi, David Uhrig, Sara Orski, Christopher Soles, Bryan D. Vogt, David S. Simmons
Incoherent neutron scattering (INS) has commonly reported a suppression of segmental dynamics for supported thin polymer films as thickness is decreased, which is counter to expectations based on other measurement techniques such as ellipsometry and

Inverse Vulcanization of Elemental Sulfur to Prepare Polymeric Electrode Materials for Li-S Batteries

February 20, 2014
Author(s)
Christopher L. Soles, Vladimir P. Oleshko, Jenny J. Kim, Adam Simmonds, Jared Griebel, Jeff Pyun, Jungjin Park, Woo Jin Chung, Woo Tae Kim, Richard Glass, Yung-Eun Sun, Kookheon Char
Sulfur-rich copolymers were synthesized via inverse vulcanization to create electroactive cathode materials for lithium-sulfur battery applications. These materials exhibit enhanced capacity retention (1005 mAh/g at 100 cycles) and extended battery

Cubic Silsesquioxanes as Tunable High Performance Coating Materials

June 19, 2013
Author(s)
Christopher Soles, Hyun W. Ro, Aaron M. Forster, Dave J. Krug, Vera Popova, Richard M. Laine
In this manuscript a series of cubic silsequioxane monomers with their eight vertices functionalized with different organic ligands terminated with triethoxysilane groups were acid hydrolyzed, spin cast into thin films, and then vitrified into hard

Organosilicate Polymer E-Beam Resists with High Resolution, Sensitivity and Stability

February 28, 2013
Author(s)
Christopher Soles, Richard Kasica, Hae-Jeong Lee, Jae H. Sim, Sung-Il Lee, Ki-Bum Kim, Hyun-Mi Kim, Do Y. Yoon
Hydrogen silsesquioxane (HSQ) is an attractive electron-beam (e-beam) resist for sub-20 nm lithography due to its high resolution, excellent line-edge-roughness (LER), and good plasma etch resistance. However, the sensitivity and long-term stability of HSQ

Capillary Wave Dynamics of Thin Polymer films over Submerged Nanostructures

November 16, 2012
Author(s)
Christopher L. Soles, Hyun W. Ro, K. J. Alvine, Oleg Shpyrko, Yenling Dai, Alec Sandy, Suresh Narayanan
The surface dynamics of thin molten polystyrene films supported by nanoscale periodic silicon line-space gratings were investigated with X-ray photon correlation spectroscopy. Surface dynamics over these nanostructures exhibit high directional anisotropy
Was this page helpful?