Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Oliver T. Slattery (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 50 of 90

Background and Review of Cavity-Enhanced Spontaneous Parametric Down-Conversion

August 22, 2019
Author(s)
Oliver T. Slattery, Lijun Ma, Kevin Zong, Xiao Tang
Spontaneous parametric down-conversion (SPDC) in a nonlinear crystal has been a workhorse for the generation of entangled and correlated single-photon pairs used for quantum communications applications for nearly three decades. However, as a naturally

A Testbed for Quantum Communication and Quantum Networks

May 13, 2019
Author(s)
Lijun Ma, Abdella Battou, Xiao Tang, Oliver T. Slattery
The development of Quantum Networks is underway with significant acceleration in in recent years. Meanwhile. quantum scale devices and components such as single photon sources, detectors, memories and interfaces are ever readier to leave the laboratory

Noise Reduction in Optically Controlled Quantum Memory

May 7, 2018
Author(s)
Lijun Ma, Oliver T. Slattery, Xiao Tang
Quantum memory is an essential device for quantum communications systems and quantum computers. An important category of quantum memory, called Optically controlled quantum memory, uses a strong classical beam to control the storage and re-emission of a

Optical quantum memory based on electromagnetically induced transparency

February 20, 2017
Author(s)
Lijun Ma, Oliver T. Slattery, Xiao Tang
Electromagnetically induced transparency (EIT) is a promising approach to implement quantum memory in quantum communication and quantum computing applications. In this paper, following a brief overview of the main approaches to quantum memory, we provide

Comparing the Linewidths from Single-Pass SPDC and Singly-Resonant Cavity SPDC

September 3, 2015
Author(s)
Oliver T. Slattery, Lijun Ma, Paulina S. Kuo, Xiao Tang
Spontaneous parametric down-conversion (SPDC) is a common method to generate entangled photon pairs for use in quantum communications. The generated single photon linewidth is a critical issue for photon-atom interactions in quantum memory applications. We

EIT Quantum Memory with Cs Atomic Vapor for Quantum Communication

September 1, 2015
Author(s)
Lijun Ma, Oliver T. Slattery, Paulina S. Kuo, Xiao Tang
Quantum memory is a key device in the implementation of quantum repeaters for quantum communications and quantum networks. We demonstrated a quantum memory based on electromagnetically-induced transparency (EIT) in a warm cesium atomic cell. The quantum

Entangled photon generation in a phase-modulated, quasi-phasematched crystal

October 14, 2013
Author(s)
Paulina S. Kuo, Jason S. Pelc, Oliver T. Slattery, Yong-Su Kim, Xiao Tang
We propose a scheme to generate polarization-entangled photon pairs by spontaneous parametric downconversion in a phase-modulated, type-II, quasi-phasematched (QPM) crystal. Instead of using two distinct crystals to generate |HV>and |VH> states, the phase

Spectral response of an upconversion detector and spectrometer

September 17, 2013
Author(s)
Paulina S. Kuo, Oliver T. Slattery, Yong-Su Kim, Jason S. Pelc, M. M. Fejer, Xiao Tang
We theoretically and experimentally investigate the spectral response of an upconversion detector and discuss implications for its use as an infrared spectrometer. Upconversion detection is based on high-conversion-efficiency sum-frequency generation (SFG)

Two-photon interference with continuous-wave operating multi-mode coherent light

September 12, 2013
Author(s)
Yong-Su Kim, Oliver T. Slattery, Paulina Kuo, Xiao Tang
We report two-photon interference with continuous-wave multi-mode coherent light. We show that the two-photon interference, in terms of the detection time difference, reveals two-photon beating fringes with the visibility V = 0.5. While scanning the

Conditions for two-photon interference with coherent pulses

July 1, 2013
Author(s)
Yong-Su Kim, Oliver T. Slattery, Paulina Kuo, Xiao Tang
We report experiments on two-photon interference between temporally non-overlapping weak coherent pulses. While the single-photon interference is washed out, the two-photon interference shows a Hong-Ou-Mandel dip with visibility of 0.50±0.09, which shows

Efficient, low-noise, single-photon frequency conversion

June 9, 2013
Author(s)
Paulina S. Kuo, Jason S. Pelc, Oliver T. Slattery, Yong-Su Kim, M. M. Fejer, Xiao Tang
We demonstrate simultaneous low-noise and efficient frequency conversion in a periodically poled LiNbO3 waveguide with spectral filtering. We achieve >50% external conversion efficiency and 600 noise counts per second at peak conversion.

Frequency Correlated Bi-Photon Spectroscopy using a Tunable Up-Conversion Detector

May 21, 2013
Author(s)
Oliver T. Slattery, Lijun Ma, Paulina S. Kuo, Yong-Su Kim, Xiao Tang
We demonstrated a scheme for frequency correlated bi-photon spectroscopy using a strongly non- degenerate down-conversion source and a tunable up-conversion detector. In this scheme, the spectral function at one wavelength range of a remote object can be

Reducing noise in single-photon frequency conversion

April 10, 2013
Author(s)
Paulina S. Kuo, Jason S. Pelc, Oliver T. Slattery, Yong-Su Kim, Martin M. Fejer, Xiao Tang
We demonstrate low-noise and efficient frequency conversion using sum-frequency mixing in a periodically poled LiNbO3 (PPLN) waveguide. Using a 1556 nm pump, 1302 nm photons are efficiently converted to 709 nm photons. We obtain 70% conversion efficiency

Dual-channel, single-photon upconversion detector near 1300 nm

November 5, 2012
Author(s)
Paulina S. Kuo, Jason S. Pelc, Oliver T. Slattery, Martin M. Fejer, Xiao Tang
Upconversion of 1.3-micron photons and detection using silicon avalanche photodiodes (Si APDs) can produce high photon detection efficiencies (PDEs) with low dark count rates. We demonstrate a novel two-channel device based on a phase-modulated
Was this page helpful?