Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Oliver T. Slattery (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 25 of 86

Comparison of the detection efficiency calibration of a single-photon avalanche detector between NIST and PTB

September 12, 2023
Author(s)
Hristina Georgieva, Thomas Gerrits, Helmuth Hofer, Anouar Rahmouni, Oliver T. Slattery, Marco Lopez, Joshua Bienfang, Alan Migdall, Stefan Kueck
The detection efficiency of a commercial single-photon avalanche detector (SPAD) has been independently determined at two national metrology institutes, the National Institute of Standards and Technology (NIST) - USA and the Physikalisch-Technische

Single-photon Sources and Detectors Dictionary

September 7, 2023
Author(s)
Joshua Bienfang, Thomas Gerrits, Paulina Kuo, Alan Migdall, Sergey Polyakov, Oliver T. Slattery
The intention of this dictionary is to define relevant terms and metrics used in the characterization of single-photon detectors and sources with the goal to promote better understanding and communication of those metrics across the single-photon

Experimental demonstration of local area entanglement distribution between two distant nodes, coexisting with classical synchronization

May 12, 2023
Author(s)
Anouar Rahmouni, Paulina Kuo, Yicheng Shi, Jabir Marakkarakath Vadakkepurayil, Nijil Lal Cheriya Koyyottummal, Ivan Burenkov, Ya-Shian Li-Baboud, Mheni Merzouki, Abdella Battou, Sergey Polyakov, Oliver T. Slattery, Thomas Gerrits
We successfully demonstrated polarization entanglement distribution and classical time synchronization using a high-accuracy precision time protocol between two quantum nodes located 250 meters apart using a single fiber simultaneously carrying both

Sub-200 ps Quantum Network Node Synchronization over a 128 km Link White Rabbit Architecture

May 12, 2023
Author(s)
Wayne McKenzie, Ya-Shian Li-Baboud, Mark Morris, Gerald Baumgartner, Anouar Rahmouni, Paulina Kuo, Oliver T. Slattery, Bruce Crabill, Mheni Merzouki, Abdella Battou, Thomas Gerrits
We show sub-200 ps synchronization between quantum networks nodes that are separated by two 64 km deployed fiber links, providing a 128 km link architecture. The architecture employs one grandmaster and two boundary White Rabbit system clocks and shows

Synchronization and Coexistence in Quantum networks

March 27, 2023
Author(s)
Ivan Burenkov, Alexandra Semionova, FNU Hala, Thomas Gerrits, Anouar Rahmouni, DJ Anand, Ya-Shian Li-Baboud, Oliver T. Slattery, Abdella Battou, Sergey Polyakov
We investigate the coexistence of clock synchronization protocols with quantum signals in a common single-mode optical fiber. By measuring optical noise between 1500 nm to 1620 nm we demonstrate a potential for up to 100 quantum DWDM channels coexisting

Experimental Ambitions for DC-Area Quantum Network Testbed

March 23, 2023
Author(s)
Oliver T. Slattery, Adam Black
Quantum networks [1] bear the promise of one day enabling diverse applications such as secure communications, distributed quantum computing, distributed sensing, and time distribution, in addition to other applications not yet identified. In recent years

Hyperspectral photon-counting optical time domain reflectometry

October 4, 2022
Author(s)
Anouar Rahmouni, Samprity Saha, Oliver T. Slattery, Thomas Gerrits
Optical time-domain reflectometry (OTDR) is one of the most used techniques for nondestructive characterization of optical fiber links. Although conventional OTDR exhibits good performance in classical network applications, photoncounting OTDR (ν-OTDR)

Portable polarization-entangled photon source & receiver toolset for quantum network metrology

October 4, 2022
Author(s)
Anouar Rahmouni, Thomas Gerrits, Paulina Kuo, Dileep Reddy, Lijun Ma, Xiao Tang, Oliver T. Slattery
A quantum network will consist of many physically separated nodes connected by quantum communication channels that distribute entanglement between them. Such nodes will require mechanisms for the generation, routing, and measurement of quantum states to

Towards entangled photon pair generation from SiC-based microring resonator

October 4, 2022
Author(s)
Anouar Rahmouni, Lijun Ma, Xiao Tang, Thomas Gerrits, Lutong Cai, Qing Li, Oliver T. Slattery
Entangled photon sources are fundamental building blocks for quantum communication and quantum networks. Recently, silicon carbide emerged as a promising material for integrated quantum devices since it is CMOS compatible with favorable mechanical

A self-validated detector for characterization of quantum network components

May 7, 2022
Author(s)
Anouar Rahmouni, Thomas Gerrits, Alan Migdall, Oliver T. Slattery, Ping-Shine Shaw, Joseph P. Rice
We are developing a nearly polarization-independent, low-cost optical trap detector between 1000 nm and 1550 nm for optical power measurements. A NIST-traceable optical power calibration of this trap detector showed a promising result.

White Rabbit-assisted quantum network node synchronization with quantum channel coexistence

May 7, 2022
Author(s)
Thomas Gerrits, Ivan Burenkov, Ya-Shian Li-Baboud, Anouar Rahmouni, DJ Anand, FNU Hala, Oliver T. Slattery, Abdella Battou, Sergey Polyakov
We show that the Ethernet-based time transfer protocol 'White Rabbit' can synchronize two distant quantum-networked nodes to within 4 ps, enabling HOM interference at >90 % visibility using 17.6 ps FWHM single-photons coexisting with White Rabbit.

Calibration of free-space and fiber-coupled single-photon detectors

September 14, 2020
Author(s)
Thomas Gerrits, Alan L. Migdall, Joshua C. Bienfang, John H. Lehman, Sae Woo Nam, Oliver T. Slattery, Jolene D. Splett, Igor Vayshenker, Chih-Ming Wang
We present our measurements of the detection efficiency of free-space and fiber-coupled single- photon detectors at wavelengths near 851 nm and 1533.6 nm. We investigate the spatial uniformity of one free-space-coupled silicon single-photon avalanche diode

Terahertz Electromagnetically Induced Transparency in Cesium Atoms

September 14, 2020
Author(s)
Sumit Bhushan, Oliver T. Slattery, Xiao Tang, Lijun Ma
We outline a proposal to realize Electromagnetically Induced Transparency (EIT) with the potential to store Terahertz (THz) optical pulses in Cesium atoms. Such a system, when experimentally realized, has a potential to make Quantum Communication possible

Optical quantum memory and its applications in quantum communication systems

January 16, 2020
Author(s)
Lijun Ma, Xiao Tang, Oliver T. Slattery
Optical quantum memory is a device that can store the quantum state of photons and retrieve it with high fidelity on demand. The device can be used to enhance performance for many quantum communication systems such as measurement device independent (MDI)

Optical Quantum Memory Applications in Quantum Communication

September 6, 2019
Author(s)
Oliver T. Slattery, Xiao Tang, Lijun Ma
Optical quantum memory is a device that can store the quantum state of photons and retrieve it with high fidelity on demand. Many approaches to quantum memory have been proposed and demonstrated. Quantum memory can be used to enhance performance in many

Background and Review of Cavity-Enhanced Spontaneous Parametric Down-Conversion

August 22, 2019
Author(s)
Oliver T. Slattery, Lijun Ma, Kevin Zong, Xiao Tang
Spontaneous parametric down-conversion (SPDC) in a nonlinear crystal has been a workhorse for the generation of entangled and correlated single-photon pairs used for quantum communications applications for nearly three decades. However, as a naturally

A Testbed for Quantum Communication and Quantum Networks

May 13, 2019
Author(s)
Lijun Ma, Abdella Battou, Xiao Tang, Oliver T. Slattery
The development of Quantum Networks is underway with significant acceleration in in recent years. Meanwhile. quantum scale devices and components such as single photon sources, detectors, memories and interfaces are ever readier to leave the laboratory