Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 26 - 50 of 74205

Entangled photon pair generation in an integrated SiC platform

May 9, 2024
Author(s)
Anouar Rahmouni, Lijun Ma, Ruixuan Wang, Jingwei Li, Xiao Tang, Thomas Gerrits, Qing Li, Oliver T. Slattery
Entanglement plays a vital role in quantum information processing. Owing to its unique material properties, silicon carbide recently emerged as a promising candidate for the scalable implementation of advanced quantum information processing capabilities

NIST Conference Papers Fiscal Year 2022

May 9, 2024
Author(s)
Kathryn Miller, Research Library and Museum NIST
This Special Publication represents the work of researchers at professional conferences, as reported by NIST employees in Fiscal Year 2022 (October 1, 2021–September 30, 2022).

An atomic boson sampler

May 8, 2024
Author(s)
Aaron Young, Shawn Geller, William Eckner, Nathan Schine, Scott Glancy, Emanuel Knill, Adam Kaufman

Rydberg states of alkali atoms in atomic vapor as SI-traceable field probes and communications receivers

May 8, 2024
Author(s)
Noah Schlossberger, Nik Prajapati, Samuel Berweger, Andrew Rotunno, Aly Artusio-Glimpse, Abrar Sheikh, Eric Norrgard, Christopher L. Holloway, Stephen Eckel
Rydberg states of alkali atoms are highly sensitive to electric fields because their electron wavefunction has a large spatial extent, leading to large polarizabilities for static fields and large transition dipole moments for time-varying fields

Rydberg states of alkali atoms in atomic vapor as SI-traceable field probes and communications receivers

May 8, 2024
Author(s)
Noah Schlossberger, Nik Prajapati, Samuel Berweger, Aly Artusio-Glimpse, Matt Simons, Abrar Sheikh, Andrew Rotunno, Eric Norrgard, Stephen Eckel, Christopher L. Holloway
Rydberg states of alkali atoms are highly sensitive to electric fields because their electron wavefunction has a large spatial extent, leading to large polarizabilities for static fields and large transition dipole moments for time-varying fields

Single-electron states of phosphorus-atom arrays in silicon

May 8, 2024
Author(s)
Maicol Ochoa, Keyi Liu, Michal Zielinski, Garnett W. Bryant
We characterize the single-electron energies and the wavefunction structure of arrays with two, three, and four phosphorus atoms in silicon by implementing atomistic tight-binding calculations and analyzing wavefunction overlaps to identify the single

Usability for Poll Workers: A Voting System Usability Test Protocol

May 8, 2024
Author(s)
Dana Chisnell, Sharon J. Laskowski, Karen Bachmann, Svetlana Z. Lowry
In this paper, we discuss our efforts to develop a repeatable test protocol for assessing usability for poll workers – temporary election officials who ensure secure and private voting in voting places. The research described in this paper is part of a

Access Control on NoSQL Databases

May 7, 2024
Author(s)
Vincent C. Hu
NoSQL database systems and data stores often outperform traditional RDBMS in various aspects, such as data analysis efficiency, system performance, ease of deployment, flexibility/scalability of data management, and users' availability. However, with an

JARVIS-Leaderboard: A Large Scale Benchmark of Materials Design Methods

May 7, 2024
Author(s)
Kamal Choudhary, Daniel Wines, Kevin Garrity, aldo romero, Jaron Krogel, Kayahan Saritas, Panchapakesan Ganesh, Paul Kent, Pascal Friederich, Vishu Gupta, Ankit Agrawal, Pratyush Tiwary, ichiro takeuchi, Robert Wexler, Arun Kumar Mannodi-Kanakkithodi, Avanish Mishra, Kangming Li, Adam Biacchi, Francesca Tavazza, Ben Blaiszik, Jason Hattrick-Simpers, Maureen E. Williams
Reproducibility and validation are major hurdles for scientific development across many fields. Materials science in particular encompasses a variety of experimental and theoretical approaches that require careful benchmarking. Leaderboard efforts have

Metropolitan-scale Entanglement Distribution, with Co-existing Quantum and Classical Signals in a single fiber

May 7, 2024
Author(s)
Anouar Rahmouni, Paulina Kuo, Ya-Shian Li-Baboud, Ivan Burenkov, Yicheng Shi, Jabir Marakkarakath Vadakkepurayil, Nijil Lal Cheriya Koyyottummal, Dileep Reddy, Mheni Merzouki, Lijun Ma, Abdella Battou, Sergey Polyakov, Oliver T. Slattery, Thomas Gerrits
The development of prototype metropolitan-scale quantum networks is underway and entails transmitting quantum information via single photons through deployed optical fibers spanning several tens of kilometers. Among the major challenges in metropolitan

Inconclusive Decisions and Error Rates in Forensic Science

May 4, 2024
Author(s)
Henry Swofford, Steven Lund, Hariharan K. Iyer, John Butler, Johannes A. Soons, Robert M. Thompson, Vincent Desiderio, JP Jones, Robert Ramotowski
In recent years, there has been discussion and controversy relating to the treatment of inconclusive decisions in forensic feature comparison disciplines when considering the reliability of examination methods and results. In this article, we offer a brief

Collection Methods for High-SNR I/Q Recordings of FDD LTE User Equipment Emissions

May 3, 2024
Author(s)
Keith Forsyth, Aric Sanders, Dan Kuester, Adam Wunderlich
This report documents collection methods for high signal-to-noise ratio (SNR) in-phase and quadrature (I/Q) radio frequency (RF) recordings of long-term evolution (LTE) uplink emissions from a commercial-off-the-shelf (COTS) handset in a fully conducted

Dissemination of UTC(NIST) over 20 km of commercial optical fiber with active phase stabilization

May 2, 2024
Author(s)
Jacob VanArsdale, Matthew J. Deutch, Michael A. Lombardi, Glenn Nelson, Jeffrey Sherman, James Spicer, William Yates, Dylan Yost, Samuel Brewer
We demonstrate the transfer of a cesium frequency standard steered to UTC(NIST) over 20 km of dark telecom optical fiber. Our dissemination scheme uses an active stabilization technique with a phase-locked voltage-controlled oscillator. Out-of-loop

Microstructural effects on the rotating bending fatigue behavior of Ti-6Al-4V produced via laser powder bed fusion with novel heat treatments

April 30, 2024
Author(s)
Nicholas Derimow, Jake Benzing, David Newton, Chad Beamer, Ping Lu, Frank DelRio, Newell Moser, Orion Kafka, Ryan Fishel, Lucas Koepke, Chris Hadley, Nik Hrabe
The rotating bending fatigue (RBF) behavior (fully reversed, R = -1) of additively manufactured (AM) Ti-6Al-4V alloy produced via laser powder bed fusion (PBF-L) was investigated with respect to different microstructures achieved through novel heat

Nanoscale Three-Dimensional Imaging of Integrated Circuits Using a Scanning Electron Microscope and Transition-Edge Sensor Spectrometer

April 30, 2024
Author(s)
Nathan Nakamura, Paul Szypryt, Amber Dagel, Bradley Alpert, Douglas Bennett, W.Bertrand (Randy) Doriese, Malcolm Durkin, Joseph Fowler, Dylan Fox, Johnathon Gard, Ryan Goodner, James Zachariah Harris, Gene C. Hilton, Edward Jimenez, Burke Kernen, Kurt Larson, Zachary H. Levine, Daniel McArthur, Kelsey Morgan, Galen O'Neil, Christine Pappas, Carl D. Reintsema, Dan Schmidt, Peter Schulz, Daniel Swetz, Kyle Thompson, Joel Ullom, Leila R. Vale, Courtenay Vaughan, Christopher Walker, Joel Weber, Jason Wheeler
X-ray nanotomography is a powerful tool for the characterization of nanoscale materials and structures, but it is difficult to implement due to the competing requirements of X-ray flux and spot size. Due to this constraint, state-of-the-art nanotomography
Displaying 26 - 50 of 74205