Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 1 - 25 of 1990

Efficient chip-based optical parametric oscillators from 590 nm to 1150 nm

December 2, 2022
Jordan Stone, Xiyuan Lu, Gregory Moille, Kartik Srinivasan
Optical parametric oscillators are a ubiquitous technology used to generate coherent light at frequencies not accessible by conventional laser gain. However, chip-based parametric oscillators operating in the visible spectrum have suffered from pump-to

The Mathematics of Quantum Coin-Flipping

December 1, 2022
Carl A. Miller
An expository article (aimed at the general mathematics community) about quantum cryptography and the philosophy of applied mathematics. The article focuses on quantum coin-flipping, a research problem that has a particularly long history.

Dynamical Instability of 3d Stationary and Traveling Planar Dark Solitons

November 9, 2022
Ian Spielman, Amilson R. Fritsch, T. Mithun, Panayotis Kevrekidis
Here we revisit the topic of stationary and propagating solitonic excitations in self-repulsive three-dimensional Bose-Einstein condensates by quantitatively comparing theoretical analysis and associated numerical computations with our experimental results

Enhanced Atomic Precision Fabrication by Adsorption of Phosphine into Engineered Dangling Bonds on H-Si Using STM and DFT

November 1, 2022
Jonathan Wyrick, Xiqiao Wang, Pradeep Namboodiri, Ranjit Kashid, Fan Fei, Joseph Fox, Richard M. Silver
Doping of Si using the scanning probe technique of hydrogen depassivation lithography has been shown to enable placing and positioning small numbers of P atoms with nanometer accuracy. Several groups have now used this capability to build devices that

Simplified algorithms for adaptive experiment design in parameter estimation

November 1, 2022
Robert D. McMichael, Sean Blakley
In experiments to estimate parameters of a parametric model, Bayesian experiment design allows measurement settings to be chosen based on utility, i.e. the predicted improvement of parameter distributions due to modeled measurement results. In this paper

Fractional optical angular momentum and multi-defect-mediated mode renormalization and orientation control in photonic crystal microring resonators

October 28, 2022
Mingkang Wang, Feng Zhou, Xiyuan Lu, Andrew McClung, Vladimir Aksyuk, Kartik Srinivasan
Whispering gallery modes (WGMs) in circularly symmetric optical microresonators exhibit integer quantized angular momentum numbers due to the boundary condition imposed by the geometry. Here, we show that incorporating a photonic crystal pattern in an

Optical-parametric oscillation in photonic-crystal ring resonators

October 20, 2022
Jennifer Black, Grant Brodnik, Haixin Liu, Su-Peng Yu, David Carlson, Jizhao Zang, Travis Briles, Scott Papp
By-design access to laser wavelength, especially with integrated photonics, is critical to advance quantum sensors, such as optical clocks and quantum-information systems, and open opportunities in optical communication. Semiconductor-laser gain provides

Density changes in amorphous silicon induced by swift heavy ions

October 4, 2022
Sjoerd Roorda, Amelie Lacroix, Stephanie Codsi, Gabrielle Long, Fan Zhang, Steven Weigand, Christina Trautmann
Pure and gold-doped amorphous silicon membranes were irradiated with swift heavy ions (75 MeV Ag or 1.1 GeV Au ions) and studied by small angle X-ray scattering. The samples that were irradiated with 1.1 GeV Au ions produced a scattering pattern consistent

High-Throughput Nanopore Fabrication and Classification Using Xe-Ion Irradiation and Automated Pore-Edge Analysis

September 26, 2022
Michal Macha, Sanjin Marion, Mukesh Tripathi, Martina Lihter, Alex Smolyanitsky, Andras Kis, Aleksandra Radenovic
Large-area nanopore drilling is a major bottleneck in state-of-the-art nanoporous 2D membrane fabrication protocols. In addition, high-quality structural and statistical descriptions of as-fabricated porous membranes are key to predicting the corresponding

Visualizing Localized, Radiative Defects in GaAs Solar Cells

September 1, 2022
Behrang Hamadani, Margaret Stevens, Brianna Conrad, Matthew Lumb, Kenneth Schmieder
We have used a calibrated, wide-field hyperspectral imaging instrument to obtain absolute spectrally and spatially resolved photoluminescence images in high growth-rate, rear-junction GaAs solar cells from 300 K to 77 K. At the site of some localized

Megahertz-rate Ultrafast X-ray Scattering and Holographic Imaging at the European XFEL

August 23, 2022
Thomas J. Silva, Hans Nembach, Mark Keller, Justin Shaw, Nanna Hagstrom, michael schneider, Nico Kerber, Alexander Yaroslavtsev, Erick Parra, Eric Fullerton, Oleg Shpyrko, Christian Gutt, Hermann Durr, Ezio Iacocca, Roopali Kukreja, stefano Bonetti, Emmanuelle Jal
The advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology, giving researchers access to X-rays with unprecedented brightness, coherence, and pulse duration

Floquet engineering topological Dirac bands

July 22, 2022
Ian Spielman, Mingwu Lu, Amilson R. Fritsch, Graham Reid, Alina Pineiro Escalera
We experimentally realized a time-periodically modulated 1D lattice for ultracold atoms featuring a pair of linear bands, each associated with a Floquet winding number: a topological invariant. These bands are spin-momentum locked and almost perfectly
Displaying 1 - 25 of 1990