Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 7001 - 7025 of 73832

Absolute energies and emission line shapes of the x-ray lines of lanthanide metals

February 1, 2021
Author(s)
Joseph Fowler, Galen O'Neil, Bradley K. Alpert, Douglas Bennett, Edward V. Denison, William Doriese, Gene Hilton, Lawrence T. Hudson, Young I. Joe, Kelsey Morgan, Daniel Schmidt, Daniel Swetz, Csilla I. Szabo-Foster, Joel Ullom
We use an array of transition-edge sensors, cryogenic microcalorimeters with 4 eV energy resolution, to measure the x-ray emission-line profiles of four elements of the lanthanide series: praseodymium, neodymium, terbium, and holmium. The spectrometer also

Algorithms and Data Structures for New Models of Computation

February 1, 2021
Author(s)
Paul Black, David W. Flater, Irena Bojanova
In the early days of computer science, the community settled on a simple standard model of computing and a basic canon of general purpose algorithms and data structures suited to that model. With isochronous computing, heterogeneous multiprocessors, flash

Electrolyte Layer Gas Triggers Cathode Potential Instability in CO2 Electrolyzers

February 1, 2021
Author(s)
Kevin Krause, Jason K. Lee, ChungHyuk Lee, Hisan W. Shafaque, Pascal J. Kim, Kieran F. Fahy, Pranay Shrestha, Jacob LaManna, Elias Baltic, David Jacobson, Daniel Hussey, Aimy Bazylak
Electrolytic carbon dioxide (CO2) reduction is becoming increasingly promising for managing anthropogenic CO2 emissions; however, issues related to unstable performance and ineffective gas management are still not fully accounted for in the field. Here, we

Implementation of a Self-Consistent Slab Model of Bilayer Structure in the SasView Suite

February 1, 2021
Author(s)
Luoxi Tan, James G. Elkins, Brian H. Davison, Elizabeth Kelley, Jonathan Nickels
Slab models are simple and useful structural descriptions which have long been used to describe lyotropic lamellar phases, such as lipid bilayers. Typically, slab models break a bilayer structure into three pieces, an inner solvent-free core and two

Association between Gestational Phthalate Exposure and Newborn Head Circumference; Impacts by Race and Sex

January 29, 2021
Author(s)
Michael S. Bloom, E. Valachovic, Thoin Begum, Rebecca J. Wineland, Abby G. Wenzel, John W. Brock, Elizabeth R. Unal, Lori Cruze, Roger B. Newman, John Kucklick
Abstract Observational and experimental studies report associations between gestational phthalate exposure and fetal development, yet few data exist to characterize phthalate effects on head circumference (HC) or to estimate the impact of race or sex. To

Electro-optic frequency combs for rapid interrogation in cavity optomechanics

January 29, 2021
Author(s)
David Long, Benjamin J. Reschovsky, Feng Zhou, Yiliang Bao, Thomas W. LeBrun, Jason Gorman
Electro-optic frequency combs were employed to rapidly interrogate an optomechanical sensor, demonstrating spectral resolution substantially exceeding that possible with a mode-locked frequency comb. Frequency combs were generated using an integrated

Magneto-optical trapping using planar optics

January 29, 2021
Author(s)
William McGehee, Wenqi Zhu, Daniel Barker, Daron Westly, Alexander Yulaev, Nikolai Klimov, Amit Agrawal, Stephen Eckel, Vladimir Aksyuk, Jabez McClelland
Laser-cooled atoms are a key component of many calibration-free measurement platforms— including clocks, gyroscopes, and gravimeters—and are a promising technology for quantum networking and quantum computing. The optics and vacuum hardware required to

Microwaves in Quantum Computing

January 29, 2021
Author(s)
Joseph C. Bardin, Daniel Slichter, David J. Reilly
The growing field of quantum computing relies on a broad range of microwave technologies, and has spurred development of microwave devices and methods in new operating regimes. Here we review the use of microwave signals and systems in quantum computing

Quantum dot lasers - history and future prospects

January 29, 2021
Author(s)
Richard Mirin, John E. Bowers, Justin Norman
We describe the initial efforts to use molecular beam epitaxy to grow InAs quantum dots on GaAs via the Stranski-Krastanow transition. We then discuss the initial efforts to use these quantum dots to demonstrate quantum dot lasers. We discuss the

Recent Industrial Roadmaps to Enable Smart Manufacturing of Biopharmaceuticals

January 29, 2021
Author(s)
Sheng Lin-Gibson, Vijay Srinivasan
Biopharmaceutical manufacturing is an evolving industry with great potential to improve public health, but laden with technical and operational challenges. It has many features that are similar to other smart manufacturing industries, but it also has some

Merging experiments and computer simulations in X-ray Computed Tomography probability of detection analysis of additive manufacturing flaws

January 27, 2021
Author(s)
Felix Kim, Adam L. Pintar, Jason Fox, Jared B. Tarr, Alkan Donmez, Anne-Francoise Obaton
X-ray Computed Tomography (XCT) is a growing industrial non-destructive testing (NDT) technique for advanced manufacturing industries such as additive manufacturing (AM). Probability of detection (POD) is a critical aspect for qualifying NDT techniques
Displaying 7001 - 7025 of 73832
Was this page helpful?