Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 76 - 100 of 846

Individual qubit addressing of rotating ion crystals in a Penning trap

July 25, 2022
Author(s)
Anthony M. Polloreno, Ana Maria Rey, John J. Bollinger
Trapped ions boast long coherence times, and excellent gate fidelities, making them a useful platform for quantum information processing. Scaling to larger numbers of ion qubits, potentially solved by photonic interconnects between Paul traps, or by

Experimental Realization of Neutron Helical Waves

May 11, 2022
Author(s)
Michael G. Huber, Charles W. Clark, Dmitry Pushin, Connor Kapahi, Lisa DeBeer-Schmitt, David Cory, Huseyin Ekinci, Melissa Henderson, Dusan Sarenac
Methods of preparation and analysis of structured waves of light, electrons, and atoms have been advancing rapidly. Despite the proven power of neutrons for material characterization and studies of fundamental physics, neutron science has not been able to

A self-validated detector for characterization of quantum network components

May 7, 2022
Author(s)
Anouar Rahmouni, Thomas Gerrits, Alan Migdall, Oliver T. Slattery, Ping-Shine Shaw, Joseph P. Rice
We are developing a nearly polarization-independent, low-cost optical trap detector between 1000 nm and 1550 nm for optical power measurements. A NIST-traceable optical power calibration of this trap detector showed a promising result.

White Rabbit-assisted quantum network node synchronization with quantum channel coexistence

May 7, 2022
Author(s)
Thomas Gerrits, Ivan Burenkov, Ya-Shian Li-Baboud, Anouar Rahmouni, DJ Anand, FNU Hala, Oliver T. Slattery, Abdella Battou, Sergey Polyakov
We show that the Ethernet-based time transfer protocol 'White Rabbit' can synchronize two distant quantum-networked nodes to within 4 ps, enabling HOM interference at >90 % visibility using 17.6 ps FWHM single-photons coexisting with White Rabbit.

Chiral central charge from a single bulk wave function

April 28, 2022
Author(s)
Isaac H. Kim, Bowen Shi, Kohtaro Kato, Victor Albert
A (2+1)-dimensional gapped quantum many-body system can have a topologically protected energy current at its edge. The magnitude of this current is determined entirely by the temperature and the chiral central charge c_-, a quantity associated with the

High-fidelity indirect readout of trapped-ion hyperfine qubits

April 21, 2022
Author(s)
Stephen Erickson, Jenny Wu, Panyu Hou, Daniel Cole, Shawn Geller, Alexander Kwiatkowski, Scott Glancy, Emanuel Knill, Daniel Slichter, Andrew C. Wilson, Dietrich Leibfried
We propose and demonstrate a protocol for high-fidelity indirect readout of trapped ion hyperfine qubits, where the state of a 9Be+ qubit ion is mapped to a 25Mg+ readout ion using laser-driven Raman transitions. By partitioning the 9Be+ ground-state

Quantum computing hardware for HEP algorithms and sensing

April 19, 2022
Author(s)
Corey Rae McRae
Quantum information science harnesses the principles of quantum mechanics to realize computational algorithms with complexities vastly intractable by current computer platforms. Typical applications range from quantum chemistry to optimization problems and

Thermal release tape-assisted semiconductor membrane transfer process for hybrid photonic devices embedding quantum emitters

April 19, 2022
Author(s)
Cori Haws, Biswarup Guha, Edgar Perez, Marcelo Davanco, Jin Dong Song, Kartik Srinivasan, Luca Sapienza
Being able to combine different materials allows taking advantage of different properties and device engineering that cannot be found or exploited within a single system. In the realm of quantum and nanophotonics, for instance, one might want to increase

Two-qubit silicon quantum processor with operation fidelity exceeding 99%

April 6, 2022
Author(s)
Michael Gullans, Adam Mills, Charlie Guinn, Anthony Sigillito, Mayer Feldman, Nielsen Erik, Jason Petta
Silicon spin qubits satisfy the necessary criteria for quantum information processing. However, precision is required to support error correction, namely high accuracy state preparation and readout as well as high fidelity single- and two-qubit control. We

Performance of a Kinetic-Inductance Traveling-Wave Parametric Amplifier at 4 Kelvin: Toward an Alternative to Semiconductor Amplifiers

April 5, 2022
Author(s)
Maxime Malnou, Joe Aumentado, Michael Vissers, Jordan Wheeler, Johannes Hubmayr, Joel Ullom, Jiansong Gao
Most microwave readout architectures in quantum computing or sensing rely on a semiconductor amplifier at 4\,K, typically a high-electron mobility transistor (HEMT). Despite its remarkable noise performance, a conventional HEMT dissipates several

Picosecond-resolution single-photon time lens for temporal mode quantum processing

March 28, 2022
Author(s)
Chaitali Joshi, Ben Sparkes, Alessandro Farsi, Thomas Gerrits, Sae Woo Nam, Varun Verma, Sven Ramelow, Alex Gaeta
Techniques to control the spectro-temporal properties of quantum states of light at ultrafast time scales are crucial for several applications in quantum information science. In this work, we report an all-optical time lens based on Bragg-scattering four

Digital Control of Superconducting Qubit Using a Josephson Pulse Generator at 3K

March 25, 2022
Author(s)
Logan Howe, Manuel Castellanos Beltran, Adam Sirois, David Olaya, John Biesecker, Paul Dresselhaus, Samuel P. Benz, Pete Hopkins
Scaling of quantum computers to fault-tolerant levels relies critically on the integration of energy-efficient, stable, and reproducible qubit control and readout electronics. In comparison to traditional semiconductor-control electronics (TSCE) located at

Entropy transfer from a quantum particle to a classical coherent light field

March 23, 2022
Author(s)
John Bartolotta, Simon Jager, Jarrod Reilly, Matthew Norcia, James K. Thompson, Graeme Smith, Murray Holland
In the eld of light-matter interactions, it is often assumed that a classical light field that interacts with a quantum particle remains almost unchanged and thus contains nearly no information about the manipulated particles. To investigate the validity

Negative quasiprobabilities enhance phase estimation in quantum-optics experiment

March 1, 2022
Author(s)
Noah Lupu-Gladstein, Y. Batuhan Yilmaz, David Arvidsson-Shukur, Aharon Brodutch, Arthur Pang, Aephraim Steinberg, Nicole Halpern
Operator noncommutation, a hallmark of quantum theory, limits measurement precision, according to uncertainty principles. Wielded correctly, though, noncommutation can boost precision. A recent foundational result relates a metrological advantage with

Toward Robust Autotuning of Noisy Quantum Dot Devices

February 25, 2022
Author(s)
Joshua Ziegler, Thomas McJunkin, Emily Joseph, Sandesh Kalantre, Benjamin Harpt, Donald Savage, Max Lagally, Mark Eriksson, Jacob Taylor, Justyna Zwolak
The current autotuning approaches for quantum dot (QD) devices, while showing some success, lack an assessment of data reliability. This leads to unexpected failures when noisy or otherwise low-quality data is processed by an autonomous system. In this
Displaying 76 - 100 of 846