Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

Search Title, Abstract, Conference, Citation, Keyword or Author
  • Published Date
Displaying 201 - 225 of 437

ThermoData Engine (TDE) Version 10.1 (Pure Compounds, Binary Mixtures, Ternary Mixtures, and Chemical Reactions): NIST Standard Reference Database 103b

July 14, 2016
Author(s)
Vladimir Diky, Chris D. Muzny, Alexander Y. Smolyanitsky, Ala Bazyleva, Robert D. Chirico, Joe W. Magee, Yauheni Paulechka, Andrei F. Kazakov, Scott A. Townsend, Eric W. Lemmon, Michael D. Frenkel, Kenneth G. Kroenlein
The ThermoData Engine is a software expert system implementing the concept of dynamic data evaluation for thermophysical and thermochemical properties of, primarily, organic compounds. This new release provides a substantially expanded database of

Enzyme-catalyzed Reactions

May 23, 2016
Author(s)
Robert N. Goldberg
The thermodynamic principles that pertain to both chemical and overall biochemical reactions are discussed with particular emphasis on enzyme-catalyzed reactions. Chemical reactions involve specific species (which may also be biochemical importance) and

Depletion-Driven Crystallization of Cubic Colloids Sedimented on a Surface

May 19, 2016
Author(s)
Harold W. Hatch, William P. Krekelberg, Steven D Hudson, Vincent K. Shen
Cubic colloids, sedimented on a surface and immersed in a solution of depletant molecules, were modeled with a family of shapes which smoothly varies from squares to circles. Using Wang-Landau simulations with expanded ensembles, we observe the formation

Self-Assembly of Trimer Colloids: Effect of shape and interaction range

April 5, 2016
Author(s)
Harold W. Hatch, Seung Y. Yang, Jeetain Mittal, Vincent K. Shen
Trimers with one attractive bead and two repulsive beads, similar to recently synthesized trimer patchy colloids, were simulated with flat-histogram Monte Carlo methods to obtain the stable self-assembled structures for different shapes and interaction

A Compilation of Enthalpies of Formation for Hydrogen-Oxygen (HxOy) Species

March 11, 2016
Author(s)
Donald R. Burgess Jr.
In this work, we have compiled enthalpies of formation for nine hydrogen-oxygen species (HxOy) and selected values for use. The compilation consists of values derived from experimental measurements, quantum chemical calculations, and evaluations. This work

Data Infrastructure for High Throughput Materials Discovery

March 7, 2016
Author(s)
Erik A. Pfeif, Kenneth G. Kroenlein
Increases in computational capability enabled sophisticated materials design to evolve from trial-and-error approaches towards more informed methodologies that require large amounts of data. Expert designed tools and their underlying databases facilitate

Adsorption, X-ray Diffraction, Photoelectron, and Atomic Emission Spectroscopy Benchmark Studies for the Eighth Industrial Fluid Properties Simulation Challenge

January 31, 2016
Author(s)
Daniel Siderius, Vincent K. Shen, Raymond D. Mountain, Richard B. Ross, David B. Aeschliman, Riaz Ahmad, John K. Brennan, Myles L. Brostrom, Kevin A. Frankel, Jonathan D. Moore, Joshua D. Moore, Derrick M. Poirier, Matthias Thommes, Nathan E. Schultz, Kenneth D. Smith
The primary goal of the eighth industrial fluid properties simulation challenge was to test the ability of molecular simulation methods to predict the adsorption of organic adsorbates in activated carbon materials. The challenge focused, in particular, on

The Eighth Industrial Fluid Properties Simulation Challenge

January 31, 2016
Author(s)
Daniel Siderius, Vincent K. Shen, Raymond D. Mountain, Nathan E. Schultz, Riaz Ahmad, John K. Brennan, Kevin A. Frankel, Jonathan D. Moore, Richard B. Ross, Matthias Thommes, Kenneth D. Smith
The goal of the eighth industrial fluid properties simulation challenge was to test the ability of molecular simulation methods to predict the adsorption of organic adsorbates in activated carbon materials. In particular, the eighth challenge focused on

Density measurements of compressed-liquid dimethyl ether + pentane mixtures

January 1, 2016
Author(s)
Stephanie L. Outcalt, Eric W. Lemmon
Compressed-liquid densities of three compositions of the binary mixture dimethyl ether (CAS No. 115-10-6) + pentane (CAS No. 109-66-0) have been measured with a vibrating U-tube densimeter. Measurements were made at temperatures from 270 K to 390 K with

ThermoData Engine (TDE) Version 10 (Pure Compounds, Binary Mixtures, Ternary Mixtures, and Chemical Reactions): NIST Standard Reference Database 103b

December 31, 2015
Author(s)
Vladimir Diky, Chris Muzny, Alexander Smolyanitsky, Ala Bazyleva, Robert D. Chirico, Joe W. Magee, Eugene Paulechka, Andrei F. Kazakov, Scott Townsend, Eric Lemmon, Michael D. Frenkel, Kenneth Kroenlein
The ThermoData Engine is a software expert system implementing the concept of dynamic data evaluation for thermophysical and thermochemical properties of, primarily, organic compounds. This new release provides a substantially expanded database of

Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons

December 16, 2015
Author(s)
Thomas C. Allison, Donald R. Burgess Jr.
Polycyclic aromatic hydrocarbons (PAHs) are molecules that exist on earth due to natural and man-made causes. They are a significant health concern as many PAH compounds are known to be carcinogenic. PAHs are generally thermodynamically stable and

Relation Between Pore Size and the Compressibility of a Confi ned Fluid

November 18, 2015
Author(s)
Daniel W. Siderius, Vincent K. Shen, William P. Krekelberg, Gennady Y. Gor, Christopher J. Rasmussen, Noam Bernstein
When a fluid is conned to a nanopore, its thermodynamic properties differ from the properties of a bulk fluid. Measuring certain properties of con fined fluid can provide information about the pore sizes. Here we report a simple relation between the pore

Thermodynamic Properties of 1,1,1,2,2,4,5,5,5-nonafluoro-4-(trifluoromethyl)-3-pentanone: Vapor Pressure, (p, ?, T) Behavior, and Speed of Sound Measurements, and Equation of State

September 30, 2015
Author(s)
Mark O. McLinden, Richard A. Perkins, Eric W. Lemmon, Tara J. Fortin
We report comprehensive thermodynamic property measurements of 1,1,1,2,2,4,5,5,5-nonafluoro-4-(trifluoromethyl)-3-pentanone. The p–ρ–T behavior was measured from T = (225 to 470) K with pressures up to 36 MPa using a two-sinker densimeter. These

MEASURING PRESSURE AND VACUUM WITH LIGHT: A NEW PHOTONIC, QUANTUM-BASED, PRESSURE STANDARD

September 3, 2015
Author(s)
Jay H. Hendricks, Jacob E. Ricker, Jack A. Stone Jr., Patrick F. Egan, Gregory E. Scace, Gregory F. Strouse, Douglas A. Olson, Donavon Gerty
The future of pressure and vacuum measurement will rely on lasers and Fabry-Perot optical cavities, and will be based on fundamental physics of light interacting with a gas. Light interacts at the quantum level with matter such that light travels at a

Molecular-Based Virial Coefficients of CO2-H2O Mixtures

August 7, 2015
Author(s)
Allan H. Harvey, Andrew J. Schultz, David A. Kofke
We report values of the second and third virial coefficients for the system CO2-H2O, calculated as a function of temperature via numerical evaluation of cluster integrals that define the coefficients in terms of the intermolecular potential energy
Was this page helpful?