Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

The role of molecular modeling & simulation in the discovery and deployment of metal-organic frameworks for gas storage and separation

Published

Author(s)

Arni Sturluson, Melanie Huynh, Alec Kaija, Caleb Laird, Sunghyun Yoon, Feier Hou, Zhenxing Feng, Christopher E. Wilmer, Yamil J. Colon, Yongchul G. Chung, Daniel W. Siderius, Cory M. Simon

Abstract

Metal-organic frameworks (MOFs) are highly tunable, extended-network, crystalline, nanoporous materials with applications in gas storage, separations, and sensing. We review how molecular models and simulations of gas adsorption in MOFs have lucidly impacted the discovery of performant MOFs for methane, hydrogen, and oxygen storage, xenon, carbon dioxide, and chemical warfare agent capture, and xylene enrichment. Particularly, we highlight how large, open databases of MOF crystal structures, post-processed for molecular simulations, are a platform for computational materials discovery. We pontificate how to orient research efforts to routinize the computational discovery of MOFs for adsorption-based engineering applications.
Citation
Molecular Simulation
Volume
45
Issue
14-15

Keywords

molecular simulation , materials discovery , metal-organic framework , adsorption
Created August 8, 2019, Updated August 23, 2019