An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Elizabeth A. Goldschmidt, Fabrizio Piacentini, I. Ruo Berchera, Sergey V. Polyakov, Silke Peters, Stefan Kuck, Giorgio Brida, Ivo P. Degiovanni, Alan L. Migdall, Marco Genovese
Knowing the underlying number and structure of occupied modes of a light field plays a crucial role in minimizing loss and decoherence of quantum information. Typically, full characterization of the mode structure involves a series of several separate
Jacob M. Taylor, Michael Gullans, Jacob J. Krich, Bertrand I. Halperin, M D. Lukin
We theoretically study the dynamic polarization of lattice nuclear spins in GaAs double quantum dots containing two electrons. We introduce a semiclassical model that allows to explore a wide range of parameter regimes in this system. We identify three
Lindsay J. LeBlanc, Matthew Beeler, Karina Jimenez-Garcia, Abigail R. Perry, Seiji Sugawa, Ross Williams, Ian B. Spielman
Zitterbewegung, a force-free trembling motion first predicted for relativistic fermions like electrons, was an unexpected consequence of the Dirac equation's unification of quantum mechanics and special relativity. Though the oscillatory motion's large
It is well-known that deciding equivalence of logic circuits is a coNP-complete problem. As a corollary, the problem of deciding weak equivalence of reversible circuits, i.e. ignoring the ancilla bits, is also coNP-complete. The complexity of deciding
Yong-Su Kim, Oliver T. Slattery, Paulina Kuo, Xiao Tang
We report experiments on two-photon interference between temporally non-overlapping weak coherent pulses. While the single-photon interference is washed out, the two-photon interference shows a Hong-Ou-Mandel dip with visibility of 0.50±0.09, which shows
Kevin J. Dwyer, Joshua M. Pomeroy, David S. Simons
A mass selected ion beam system is used to isotopically enrich and deposit thin films, which are measured to be 99.9961(4)% 12C. In solid state quantum information, isotopic enrichment of materials has allowed significant improvements in the coherence time
Multivariate Public Key Cryptography (MPKC) has become one of a few options for security in the quantum model of computing. Though a few multivariate systems have resisted years of effort from the cryptanalytic community, many such systems have fallen to a
Francisco E. Becerra Chavez, Jingyun Fan, Alan L. Migdall
Generalized quantum measurements can perform perfect discrimination of nonorthogonal states by allowing for inconclusive results, task which is impossible performing only measurements with definite outcomes. We demonstrate the realization of generalized
Jingyun Fan, Yanhua (. Zhai, Francisco E. Becerra Chavez, Boris L. Glebov, Adriana E. Lita, Brice R. Calkins, Thomas Gerrits, Sae Woo Nam, Alan L. Migdall
We examine the photon statistics of photon-subtracted thermal light using photonnumberresolving detection. We show the photon-number distribution transforms from a Bose-Einstein distribution to a Poisson distribution as the number of photons subtracted
Matthew C. Beeler, Ross A. Williams, Karina K. Jimenez Garcia, Lindsay J. LeBlanc, Abigail R. Perry, Ian B. Spielman
Electronic properties like current flow are usually unaffected by the electrons spin angular momentum, an internal degree of freedom present in quantum particles that can usually be either up or down. The spin-Hall effects (SHEs), first proposed 40
Antia A. Lamas-Linares, Brice R. Calkins, Nathan A. Tomlin, Thomas Gerrits, Adriana Lita, Joern Beyer, Richard Mirin, Sae Woo Nam
Transition edge sensors (TES) have the highest reported efficiencies (> 98%) for single photon detection in the visible and near infrared. Experiments in quantum information and foundations of physics that rely on this efficiency have started incorporating
Paulina S. Kuo, Jason S. Pelc, Oliver T. Slattery, Yong-Su Kim, M. M. Fejer, Xiao Tang
We demonstrate simultaneous low-noise and efficient frequency conversion in a periodically poled LiNbO3 waveguide with spectral filtering. We achieve >50% external conversion efficiency and 600 noise counts per second at peak conversion.
We investigate the out-of-equilibrium dynamics in strongly interacting photonic systems. Specifically, we develop a method to investigate such system when they are externally driven with a coherent photonic field and evaluate relevant physical observables
Alain Rufenacht, Charles J. Burroughs, Paul D. Dresselhaus, Samuel P. Benz
A 10 V programmable Josephson voltage standard has enabled sine waves with voltages up to 7 V rms to be accurately measured with a differential sampling measurement technique. Expanding the voltage range for this technique enables direct calibration of the
Jifeng Qu, Horst Rogalla, Yang Fu, Jianqiang Zhang, Alessio Pollarolo, Samuel Benz
A new quantum voltage calibrated Johnson noise thermometer (JNT) was developed at NIM to demonstrate the electrical approach that determines the Boltzmann constant k by comparing electrical and thermal noise power. A measurement with an integration period
Alessio Pollarolo, Tae H. Jeong, Samuel Benz, Horst Rogalla
In 2010, NIST measured the Boltzmann constant k with an electronic technique that measured the Johnson noise of a 100 Ω resistor at the triple point of water (TPW) and used a voltage waveform synthesized with a quantized voltage noise source (QVNS) as a
Charles J. Burroughs, Alain Rufenacht, Samuel Benz, Paul Dresselhaus
The amplitudes of stepwise-approximated sine waves generated by programmable Josephson voltage standards (PJVS) are not intrinsically accurate because the transitions between the quantized voltages depend on numerous conditions. We have developed a method
Yi-Kai Liu, Stephen P. Jordan, Pawel Wocjan, Adam Bookatz
A quantum expander is a unital quantum channel that is rapidly mixing, has only a few Kraus operators, and can be implemented efficiently on a quantum computer. We consider the problem of estimating the mixing time (i.e., the spectral gap) of a quantum
Alessandro Restelli, Joshua C. Bienfang, Alan L. Migdall
We present an InGaAs/InP single-photon detection system operating at 1.25 GHz with detection efficiency above 50 % and per-gate afterpulse probability, measured 24.8 ns after an avalanche, below 0.2 %. The high efficiency and low afterpulse probabilities
We present the quantum key distribution (QKD) secure key ratio expression in a form that exposes the parameters that affect the Reconciliation (error correction) stage. Reconciliation is the least well understood in practical terms and is typically
Oliver T. Slattery, Lijun Ma, Paulina S. Kuo, Yong-Su Kim, Xiao Tang
We demonstrated a scheme for frequency correlated bi-photon spectroscopy using a strongly non- degenerate down-conversion source and a tunable up-conversion detector. In this scheme, the spectral function at one wavelength range of a remote object can be
We present a general theoretical framework on light-wave mixing and scattering in quantum gases. We show that all such processes that originate from elementary excitations are stimulated Raman or hyper-Raman in nature. In the forward direction, the third
Bradley K. Alpert, Robert D. Horansky, Douglas A. Bennett, William B. Doriese, Joseph W. Fowler, Andrew Hoover, Michael W. Rabin, Joel N. Ullom
We introduce a filter construction method for pulse processing that differs in two respects from that in standard optimal filtering, in which the average pulse shape and noise power spectral density are combined to create a convolution filter for
Sergey V. Polyakov, Alan L. Migdall, Ivo P. Degiovanni, Fabrizio Piacentini, Giorgio Brida, Marco Genovese, Paola Traina
We describe in detail the first experimental test that distinguishes between an event-based corpuscular model of the interaction of photons with matter and quantum mechanics. The test looks at the interference that results as a single photon passes through
Vanita Srinivasa, Katja C. Nowack, Mohammad Shafiei, Lieven M. Vandersypen, Jacob M. Taylor
We investigate phonon-induced spin and charge relaxation mediated by spin-orbit and hyper- fine interactions for a single electron confined within a double quantum dot. A simple toy model incorporating both direct decay to the ground state of the double