An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Dustin A. Hite, Hossein Jooya, X Fan, Kyle S. McKay, David P. Pappas, H.R. Sadeghpour
We show in this work that the work function change due to carbon adatom adsorption is not predominantly affected by the crystallographic orientation of the gold surface. Ab-initio calculations within density-functional theory are performed on carbon
S. Ran, G. M. Schmiedeshoff, N. Pouse, I. Jeon, Nicholas Butch, R. B. Adhikari, C. C. Almasan, M. B. Maple
We investigated the energy gap associated with the hidden order (HO) phase and the Gruneisen ratio in the URu 2-xRe xSi 2 system using a combination of thermal expansion coefficient and specific heat measurements. As the HO phase transition is suppressed
Scott W. Schmucker, Pradeep Namboodiri, Ranjit Kashid, Xiqiao Wang, Binhui Hu, Jonathan Wyrick, Alline Myers, Joshua D. Schumacher, Richard M. Silver, Michael Stewart
Scanning tunneling microscopy (STM) enables the fabrication of 2-D delta-doped structures in Si with atomistic precision, with applications from tunnel field effect transistors to qubits. The combination of a very small contact area and the restrictive
Er-Jia Guo, Ryan Desautels, David Keavney, Manuel A. Roldan, Brian Kirby, Dongkyu Lee, Zhaoliang Liao, Timothy Charlton, Andreas Herklotz, T. Zac Ward, Michael R. Fitzsimmons, Ho Nyung Lee
The formation of twinning domains has been established as a major mechanism to accommodate epitaxial strain in rhombohedral ferroelastic oxide thin films. The elastic energy can be released at the expense of high interfacial energy at the domain boundaries
Eric L. Shirley, John T. Vinson, Liang Li, Maria K. Chan, Joong S. Park, Eungje Lee, John W. Freeland, Zhenpeng Yao, Fernando Castro, Timothy T. Fister, Christopher M. Wolverton, Michael Thackeray
To exploit extra capacity beyond the traditionally postulated transition metal redox in Li-ion batteries, it is imperative to understand the exact role of oxygen in the charge compensation, i.e., what triggers the electron occupation change in oxygen and
Peter M. Gehring, Zhijun NMN Xu, C. Stock, Guangyong NMN Xu, Daniel E Parshall, Leland Weldon Harriger, C. A. Gehring, Xiaobing Li, Haosu Luo
Manley et al. (Science Advances, 16 September 2016, p.e1501814) report a splitting of a transverse acoustic phonon branch below T c in the relaxor ferroelectric Pb[(Mg 1/3Nb 2/3) 1-xTi x]O 3 with x=0.30 using neutron scattering methods. They argue that
Emily G. Bittle, Adam J. Biacchi, Lisa A. Fredin, Andrew A. Herzing, Thomas C. Allison, Angela R. Hight Walker, David J. Gundlach
Charge transport in organic semiconductors is governed by a mix of polaron hopping and band- like transport mechanisms. The energy of polaron hopping and formation are similar in magnitude to the energies of inter- and intra- molecular modes, which points
Y. Ijiri, Kathryn L. Krycka, I. Hunt-Isaak, H. Pan, J. Hsieh, Julie Borchers, James Jennings Rhyne, Samuel D. Oberdick, A. Abdelgawad, S. A. Majetich
Polarization-analyzed small-angle neutron scattering methods are used to determine the spin arrangements in ordered three-dimensional assemblies of 7.4 nm diameter core-shell Fe 3O 4/Mn xFe 3-xO 4 nanoparticles. In moderate to high magnetic fields, the
Ran Tao, Kirk D. Rice, Aaron M. Forster, Randy A. Mrozek, Shawn T. Cole, Reygan M. Freeney, Anicet Djakeu Samen
Roma Plastilina No. 1 (RP1), a ballistic clay, is essential for establishing injury limits in standards-based ballistic resistance testing of body armor. It serves as a ballistic witness material (BWM), behind the armor, where the magnitude of plastic
We investigate the influence of ion and nanoparticle solvation on the structure of aqueous salt- free solution of highly charged nanoparticles. In particular, we perform molecular dynamics simulations of a minimal model of highly charged nanoparticles with
W. J. Gannon, I. A. Zaliznyak, L. S. Wu, A. E. Feiguin, A. M. Tsvelik, F. Demmel, Yiming Qiu, John R. Copley, M. S. Kim, M. C. Aronson
The fundamental excitation of spin chain systems is the spinon, which is a deconfined quasiparticle with fractionalized spin. Coupling spin chains leads to the confinement of these spinons, a condensed matter analog of quark confinement in quantum
Qiming Shao, Alexander Grutter, Yawen Liu, Guoqiang Yu, Chao-Yao Yang, Dustin A. Gilbert, Elke Arenholz, Padraic Shafer, Xiaoyu Chi, Chi Tang, Mohammed Aldosary, Aryan Navabi, Qing Lin He, Brian Kirby, Jing Shi, Kang L. Wang
Ferrimagnetic insulators (FMIs), such as rare-earth iron garnets, are of considerable interest for low-power spintronics due to low Gilbert damping and the absence of free charge carriers. FMIs are also promising candidate materials for high-frequency
Kha Tran, Galan Moody, Travis M. Autry, Kevin L. Silverman, Fengcheng Wu, Junho Choi, Akshay Singh, Jacob Embley, Andre Zepeda, Marshall Cambel, Kyoung Kim, Amritesh Rai, Daniel Sanchez, Takashi Taniguchi, Kenji Watanabe, Li Yang, Nanshu Lu, Sanjay Banerjee, emanuel tutuc, Allan H. MacDonald, Xiaoqin Li
Recent advances in the isolation and stacking of monolayers of van der Waals materials have provided approaches for the preparation of quantum materials in the ultimate two-dimensional limit. In van der Waals heterostructures formed by stacking two