NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Nanoscale Ferroelastic Twins Formed in Strained LaCoO3 Films
Published
Author(s)
Er-Jia Guo, Ryan Desautels, David Keavney, Manuel A. Roldan, Brian Kirby, Dongkyu Lee, Zhaoliang Liao, Timothy Charlton, Andreas Herklotz, T. Zac Ward, Michael R. Fitzsimmons, Ho Nyung Lee
Abstract
The formation of twinning domains has been established as a major mechanism to accommodate epitaxial strain in rhombohedral ferroelastic oxide thin films. The elastic energy can be released at the expense of high interfacial energy at the domain boundaries. The domain orientation in ferroelastic films is expected to be largely influenced by the epitaxy to crystallographically different substrates. Here we report the observation of one-dimensional ferroelastic domains in lanthanum cobaltite thin films. A unidirectional structural modulation is achieved by selective choice of substrates possessing broken in-plane rotational symmetry. This unique structural distortion perturbs the crystal field energy, leading to unexpected inplane anisotropy of orbital configuration and magnetization. These findings demonstrate the utilization of the uniaxial structural variation to control the coupling between spin, lattice, and orbital degrees of freedom in complex ferroic oxides, and reveal the potential for simulation of exotic phenomena in other ferroelastic materials through artificial domain engineering.
Guo, E.
, Desautels, R.
, Keavney, D.
, Roldan, M.
, Kirby, B.
, Lee, D.
, Liao, Z.
, Charlton, T.
, Herklotz, A.
, Ward, T.
, Fitzsimmons, M.
and Lee, H.
(2019),
Nanoscale Ferroelastic Twins Formed in Strained LaCoO<sub>3</sub> Films, Science Advances, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=926589
(Accessed October 10, 2025)