Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

Search Title, Abstract, Conference, Citation, Keyword or Author
  • Published Date
Displaying 51 - 75 of 2283

Understanding the Origin and Implication of the Indirect-to-Direct Bandgap Transition in Multilayer InSe

May 2, 2024
Author(s)
Nicholas Pike, Ruth Pachter, Michael Altvater, Chris Stevens, Matthew Klein, Joshua Hendrickson, Huairuo Zhang, Sergiy Krylyuk, Albert Davydov, Nicholas Glavin
Indium selenide (InSe) multilayers have attracted much interest recently due to their electronic and optical properties, partially dependent on the existence of an indirect-to-direct bandgap transition that is correlated to the multilayer thickness. In

Tuning the Spontaneous Exchange Bias Effect in La1.5Sr0.5CoMnO6 with Sintering Temperature

April 24, 2024
Author(s)
C Macchiutti, J Jesus, F Carneiro, L Bufaical, Ryan Klein, Q. Zhang, M Kirkham, Craig Brown, R dos Reis, G. Perez, E. Bittar
Here, we present a study of the influence of microstructure on the magnetic properties of polycrystalline samples of the La1.5Sr0.5CoMnO6 double perovskite, with primary attention to the spontaneous exchange bias effect, a fascinating recently discovered

Orphan high field superconductivity in non-superconducting uranium ditelluride.

April 20, 2024
Author(s)
Corey Frank, Sylvia Lewin, Gicela Saucedo Salas, Peter Czajka, Ian Hayes, Hyeok Yoon, Tristin Metz, Johnpierre Paglione, John Singleton, Nicholas Butch
Reentrant superconductivity is an uncommon phenomenon in which the destructive effects of magnetic field on superconductivity are mitigated, allowing a zero-resistance state to survive under conditions that would otherwise destroy it. Typically, the

A multi-edge study: investigating Co oxidation states of pristine LiNixMnyCo1-x-yO2 cathode materials by high energy-resolution X-ray spectrometry

March 14, 2024
Author(s)
Karina Bzheumikhova, Claudia Zech, Kai Schuler, John Vinson, Yves Kayser, Burkhard Beckhoff
The investigation of Co oxidation states in pristine LiNixMnyCo1−x−yO2 (NMC) cathodes (NMC111, NMC622, NMC811) has been a subject of ongoing debate, with conflicting findings in the literature. In this study, we present a novel and comprehensive approach

DC to GHz measurements of a near-ideal 2D material: P+ monolayers

March 8, 2024
Author(s)
Neil M. Zimmerman, Antonio Levy, Pradeep Namboodiri, Joshua M. Pomeroy, Xiqiao Wang, Joseph Fox, Richard M. Silver
P+ monolayers in Si are of great scientific and technological interest, both intrinsically as a material in the "ideal vacuum" of crystalline Si, and because they are showing great promise as qubits of electron and nuclear spin. The GHz complex

Isotopic effects on in-plane hyperbolic phonon polaritons in MoO3

March 4, 2024
Author(s)
Jeremy Schultz, Sergiy Krylyuk, Jeffrey Schwartz, Albert Davydov, Andrea Centrone
Hyperbolic phonon polaritons (HPhPs), hybrids of light and lattice vibrations in polar dielectric crystals, empower nano-photonic applications by enabling the confinement and manipulation of light at the nanoscale. Molybdenum trioxide (α-MoO3) is a

Programming Interfacial Porosity and Symmetry with Escherized Colloids

February 22, 2024
Author(s)
Nathan Mahynski, Vincent K. Shen
We simultaneously design the porosity and plane symmetry of self-assembling colloidal films by using isohedral tiles to determine the location and shape of enthalpically interacting surface patches on motifs being functionalized. The symmetries of both the

Breakdown of Sound in Superfluid Helium

February 19, 2024
Author(s)
Marc Nichitiu, Craig Brown, Igor Zaliznyak
As elementary particles carry energy and momentum in the Universe, quasiparticles are the elementary carriers of energy and momentum quanta in condensed matter. And, as elementary particles, under certain conditions quasiparticles can be unstable and decay

Entropy Driven Incommensurate Structures in the Frustrated Kagome Staircase Co3V2O8

February 18, 2024
Author(s)
Joel Helton, Nyrissa Rogado, Robert Cava, Jeffrey Lynn
Co3V2O8 features spin-3/2 moments arrayed on a kagome staircase lattice. A spin density wave with a continuously evolving propagation vector of ⃗k = (0, δ, 0), showing both incommensurate states and multiple commensurate lock-ins, is observed at

First-Order Phase Transition versus Spin-State Quantum-Critical Scenarios in Strain-Tuned Epitaxial Cobaltite Thin Films

February 14, 2024
Author(s)
John Dewey, Vipul Chaturvedi, Tatiana Webb, Prachi Sharma, William Postiglione, P. Quarterman, Purnima Balakrishnan, Brian Kirby, Lucca Figari, Caroline Korostynski, Andrew Jacobson, Turan Birol, Rafael Fernandes, Abhay Pasupathy, Chris Leighton
Pr-containing perovskite cobaltites exhibit unusual valence transitions, coupled to coincident structural, spin-state, and metal-insulator transitions. Heteroepitaxial strain was recently used to control these phenomena in the model (Pr1−yYy )1−xCaxCoO3−δ

Continuum of magnetic excitations in the Kitaev honeycomb iridate D3LiIr2O6

February 12, 2024
Author(s)
Thomas Halloran, Yishu Wang, Kemp Plumb, M. B. Stone, Barry Winn, M. K. Graves-Brook, Jose Rodriguez Rivera, Yiming Qiu, Prashant Chauhan, N. Armitage, Tomohiro Takayama, Hidenori Takagi, Collin L. Broholm
Inelastic neutron scattering (INS) measurements of powder D3(7Li)(193Ir)2O6 reveal low energy magnetic excitations with a scattering cross section that is featureless versus |Q| and consistent with a Kitaev spin-liquid (KSL) state. The magnetic nature of

Resonant Ultrasound Spectroscopy for Irregularly Shaped Samples and Its Application to Uranium Ditelluride

February 9, 2024
Author(s)
Florian Theuss, Gregorio de la Fuente Simarro, Avi Shragai, Gael Grissonnanche, Ian Hayes, Shanta Saha, Tatsuya Shishidou, Taishi Chen, Satoru Nakatsuji, Sheng Ran, Michael Weinert, Nicholas Butch, Johnpierre Paglione, B. Ramshaw
Resonant ultrasound spectroscopy (RUS) is a powerful technique for measuring the full elastic tensor of a given material in a single experiment. Previously, this technique was limited to regularly-shaped samples such as rectangular parallelepipeds, spheres

Topological Hall effect induced by chiral fluctuations in a kagome lattice

January 30, 2024
Author(s)
Kyle Fruhling, Alenna Streeter, Sougata Mardanya, Xiaoping Wang, Priya Baral, Oksana Zaharko, Igor Mazin, Sugata Chowdhury, William Ratcliff, Fazel Tafti
Topological Hall effect (THE) is a hallmark of scalar spin chirality, which is found in static skyrmion lattices. Recent theoretical works have shown that scalar spin chirality could also emerge dynamically from thermal spin fluctuations. Evidence of such

Noncollinear 2k Antiferromagnetism in the Zintl Semiconductor Eu5In2Sb6

January 29, 2024
Author(s)
Vincent Morano, Jonathan N. Gaudet, Nicodemos Varnava, Tanya Berry, Thomas Halloran, Chris Lygouras, Xiaoping Wang, Christina M. Hoffman, Guangyong Xu, Jeffrey Lynn, Tyrel McQueen, David Vanderbilt, Collin L. Broholm
Eu5In2Sb6 is an orthorhombic non-symmorphic small band gap semiconductor with three distinct Eu2+ sites and two low-temperature magnetic phase transitions. The material displays one of the greatest (negative) magnetoresistances of known stoichiometric

Controllable Conical Magnetic Structure and Spin-Orbit-Torque Switching in Symmetry-Broken Ferrimagnetic Films

January 23, 2024
Author(s)
Yaqin Guo, Jing Zhang, Purnima Balakrishnan, Alexander Grutter, Baishun Yang, Michael R. Fitzsimmons, Timothy Charlton, Haile Ambaye, Xu Zhang, Hanshen Huang, Zhi Huang, Jinyan Chen, Chenyang Guo, Xiufeng Han, Kang Wang, Hao Wu
Exploring and controlling chiral spin textures has attracted enormous interest from the perspective of fundamental research and spintronic applications. Here, we report the emergence of spiral spin states, bulk spin-orbit torque (SOT), and the

Multi-code Benchmark on Ti K-edge X-ray Absorption Spectra of Ti-O Compounds

January 11, 2024
Author(s)
Fanchen Meng, Benedikt Maurer, Fabian Peschel, Sencer Selcuk, Xiaohui Qu, Mark S Hybertsen, Christian Vorwerk, Claudia Draxl, John Vinson, Deyu Lu
X-ray absorption spectroscopy (XAS) is an element-specific materials characterization technique that is sensitive to structural and electronic properties. First-principles simulated XAS has been widely used as a powerful tool to interpret experimental

Magnetism and Fermiology of Kagome Magnet YMn6Sn4Ge2

January 7, 2024
Author(s)
Hari Bhandari, Rebecca Dally, Peter E. Siegfried, Resham Regmi, Kirrily Rule, Songxue Chi, Jeffrey Lynn, I. Mazin, Nirmal J. Ghimire
Kagome lattice magnets are an interesting class of materials as they can host topological properties in their magnetic and electronic structures. YMn6Sn6 is one such compound in which a series of competing magnetic phases is stabilized by an applied

Visualizing the merger of tunably coupled graphene quantum dots

December 6, 2023
Author(s)
Daniel Walkup, Fereshte Ghahari, Steven R. Blankenship, Kenji Watanabe, Takashi Taniguchi, Nikolai Zhitenev, Joseph A. Stroscio
Coupled quantum dots have been realized in a wide variety of physical systems and have attracted interest for many different applications. Here, we examine novel graphene quantum dots in backgated devices on hBN, and visualize their merger using scanning
Was this page helpful?