An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Vipin Tondare, Justin Whiting, Adam L. Pintar, Shawn P. Moylan, Aurelien Neveu, Filip Francqui
The National Institute of Standards and Technology (NIST) organized an interlaboratory study to assess the repeatability and reproducibility of the data generated by two commercially available rotating drum powder rheometers namely, Granudrum and
Haesoo Lee, KHUSHBOO SUMAN, David Moglia, Ryan Murphy, Norman Wagner
Colloidal suspensions of anisotropic particles are ubiquitous in particle-based industries. Consequently, there is a need to quantify the effects of particle shape on equilibrium phases and kinetic state transitions, particularly at lower aspect ratios (L
Kangming Li, Brian DeCost, Kamal Choudhary, Jason Hattrick-Simpers
Use of machine learning has been increasingly popular in materials science as data-driven materials discovery is becoming the new paradigm. Reproducibility of findings is paramount for promoting transparency and accountability in research and building
Nicholas Derimow, Jake Benzing, David Newton, Chad Beamer, Ping Lu, Frank DelRio, Newell Moser, Orion Kafka, Ryan Fishel, Lucas Koepke, Chris Hadley, Nik Hrabe
The rotating bending fatigue (RBF) behavior (fully reversed, R = -1) of additively manufactured (AM) Ti-6Al-4V alloy produced via laser powder bed fusion (PBF-L) was investigated with respect to different microstructures achieved through novel heat
W. L. N. C. Liyanage, Nan Tang, Rebecca Dally, Lizabeth J. Quigley, C. Buchanan, Guo-Jiun Shu, Nicholas Butch, Kathryn Krycka, Markus Bleuel, Julie A. Borchers, Debeer-Schmitt Lisa, Dustin Gilbert
Magnetic skyrmions are topologically protected, nanoscale whirls of the spin configuration that tend to form hexagonally ordered arrays. As a topologically non-trivial structure, the nucleation and annihilation of the skyrmion, as well as the interaction
Trey Diulus, Andrew Naclerio, J. Anibal Boscoboinik, Ashley Head, Evgheni Strelcov, Piran Kidambi, Andrei Kolmakov
We demonstrate that ambient pressure x-ray photoelectron spectroscopy (APXPS) can be used for in situ studies of dynamic changes in surface chemistry in a plasma environment. Hexagonal boron nitride (h-BN) was used in this study as a model system since it
Paolo Bortot, Matteo Ortolani, Michele Sileo, Erick Escorza, Matthew Connolly, Zack Buck, Ashwini Chandra
Hydrogen is expected to play a major role in the decarbonization of the energy grid. As a fuel, it possesses an elevated energy density per unit mass, about twice as much as natural gas but also a very low mass density; for this reason, it is preferably
Corey Frank, Sylvia Lewin, Gicela Saucedo Salas, Peter Czajka, Ian Hayes, Hyeok Yoon, Tristin Metz, Johnpierre Paglione, John Singleton, Nicholas Butch
Reentrant superconductivity is an uncommon phenomenon in which the destructive effects of magnetic field on superconductivity are mitigated, allowing a zero-resistance state to survive under conditions that would otherwise destroy it. Typically, the
Kamal Choudhary, Matthew Evans, Gian-Marco Rignanese
The Open Databases Integration for Materials Design (OPTIMADE) application programming interface (API) empowers users with holistic access to a growing federation of databases, enhancing the accessibility and discoverability of materials and chemical data
Kangming Li, Kamal Choudhary, Brian DeCost, Michael Greenwood, Jason Hattrick-Simpers
High-entropy materials (HEMs) have recently emerged as a significant category of materials, of- fering highly tunable properties. However, the scarcity of HEM data in existing density functional theory (DFT) databases, primarily due to computational
Bijal Patel, Hongbo Feng, Whitney Loo, Chad R. Snyder, Christopher Eom, Julia Murphy, Daniel Sunday, Paul Nealey, Dean DeLongchamp
Hierarchical structure-within-structure assemblies offer a route toward increasingly complex and multifunctional materials while pushing the limits of block copolymer self-assembly. We present a detailed study of the self-assembly of a series of
Karthikeyan Hariharan, Andrew Iams, James Zuback, Todd Palmer, Narasi Sridhar, Rashed Alazemi, Gerald Frankel, Eric Schindelholz
We report a significant improvement in localized corrosion resistance of Ni-based alloy 625 processed by directed energy deposition (DED) in an aggressive aqueous chloride environment. Disparities observed in the polarization behavior between DED and
Stian Romberg, Paul Roberts, Chad R. Snyder, Anthony Kotula
Simultaneous rheology and conversion measurements of neat and composite epoxy resins reveal that conventional models neither accurately nor fully describe the relationship between rheology and conversion. We find that models predicting thermoset conversion
Nicholas Derimow, Madelyn Madrigal-Camacho, Orion Kafka, Jake Benzing, Edward Garboczi, Samuel J. Clark, Suveen Mathaudhu, Nik Hrabe
Titanium alloy (Ti-6Al-4V) is widely used in additive manufacturing (AM) industry. However, as laser powder-bed fusion (PBF-L) additive manufacturing (AM) advances towards reliable production of titanium parts, a thorough understanding of the process
Behrang Hamadani, Ganga Neupane, Sheng Fu, Zhaoning Song, Yanfa Yan
The rapidly growing interest in indoor photovoltaics for low light energy harvesting applications further necessitates understanding of factors that impact the performance and efficiency of these devices under low light. The external radiative efficiency
Jenny Martinez, Jenna Wardini, Xueli Zheng, Lauren Moghimi, Jason Rakowsky, Jonathan Means, Huiming Guo, Ivan Kuzmenko, Jan Ilavsky, Fan Zhang, Pratik Dholabhai, Leora Dresselhaus-Marais, William Bowman
Deploying energy storage and carbon capture at scale is hindered by the substantial endothermic penalty of decomposing CaCO3 to CaO and CO2, and the rapid loss of CO2 absorption capacity by CaO sorbent particles due to sintering at the high requisite
An interlaboratory study, involving eigth international laboratories and coordinated by COMTES FHT (Czech Republic), was conducted to validate tensile measurements obtained using miniature specimens on additively manufactured (AM) components and artifacts
Methods to determine the optimal neutron wavelength to maximize detector count rates on small angle neutron scattering (SANS) diffractometers at reactor sources is presented. Three experimental methods are used to determine the choice of optimal wavelength
Caitlyn Wolf, Youngju Kim, Paul A. Kienzle, Pushkar Sathe, Michael Daugherty, Peter Bajcsy, Daniel Hussey, Kathleen Weigandt
Hierarchical structures and heterogeneous materials are found in many natural and engineered systems including additive manufacturing, alternative energy, biology and polymer science. Though the structure–function relationship is important for developing
Hayden Evans, Taner N. Yildirim, Peng Peng, Yongqiang Cheng, Zeyu Deng, Qiang Zhang, Dinesh Mullangi, Dan Zhao, Pieremanuele Canepa, Hanna Breunig, Anthony Cheetham, Craig Brown
Md. Habibur Rahman, Prince Gollapalli, Panayotis Manganaris, Satyesh Kumar Yadav, Ghanshyam Pilania, Arun Kumar Mannodi-Kanakkithodi, Brian DeCost, Kamal Choudhary
First principles computations reliably predict the energetics of point defects in semiconductors, but are constrained by the expense of using large supercells and advanced levels of theory. Machine learning models trained on computational data, especially
Stephen Moxim, James Ashton, Mark Anders, Nathaniel Lawson, Jason Ryan
We identify two distinct atomic-scale defect responses following hot carrier stressing of HfO2 based metal-oxide-semiconductor field-effect transistors (MOSFETs). Revealed through various electron spin based magnetic resonance techniques, including spin
Avery Baumann, Peter Beaucage, Richard Vallery, David Gidley, Ryan Nieuwendaal, Chad R. Snyder, Jan Ilavsky, Fu Chen, Christopher Stafford, Christopher Soles
Metal-organic frameworks (MOFs) are renowned for their tunable structure, porosity, and internal chemistry with demonstrated applications in molecular separations, storage, and conversion. While they are widely usable, the powdery characteristics of MOF