NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Orphan High Field Superconductivity in Non-Superconducting Uranium Ditelluride
Published
Author(s)
Corey Frank, Sylvia Lewin, Gicela Saucedo Salas, Peter Czajka, Ian Hayes, Hyeok Yoon, Tristin Metz, Johnpierre Paglione, John Singleton, Nicholas Butch
Abstract
Reentrant superconductivity is an uncommon phenomenon in which the destructive effects of magnetic field on superconductivity are mitigated, allowing a zero-resistance state to survive under conditions that would otherwise destroy it. Typically, the reentrant superconducting region derives from a zero-field parent superconducting phase. Here, we show that in UTe2 crystals extreme applied magnetic fields give rise to an unprecedented high-field superconductor that lacks a zero-field antecedent. This high-field orphan superconductivity exists at angles offset between 29o and 42o from the crystallographic b to c axes with applied fields between 37 T and 52 T. The stability of field-induced orphan superconductivity presented in this work defies both empirical precedent and theoretical explanation and demonstrates that high-field superconductivity can exist in an otherwise non-superconducting material.
Frank, C.
, Lewin, S.
, Saucedo Salas, G.
, Czajka, P.
, Hayes, I.
, Yoon, H.
, Metz, T.
, Paglione, J.
, Singleton, J.
and Butch, N.
(2024),
Orphan High Field Superconductivity in Non-Superconducting Uranium Ditelluride, Nature Communications, [online], https://doi.org/10.1038/s41467-024-47090-1, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=959062
(Accessed October 8, 2025)