NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Nicholas B. Guros, Arvind Balijepalli, Jeffery B. Klauda
Aided by efforts to improve their speed and efficiency, molecular dynamics (MD) simulations provide an increasingly powerful tool to study the structure-function relationship of pentameric ligand-gated ion channels (pLGICs). However, accurate reporting of
We describe a methodology for constructing tabular potentials of supertoroids with short range interactions, which requires the calculation of the volume of overlap of these shapes for many relative positions and orientations. Recent advances in the
Mauricio C. Diaz, Jiang Hua, Esko Kauppinen, Renu Sharma, Perla Balbuena
The need of designing and controlling single-walled carbon nanotube (SWCNT) properties is a challenge in a growing nanomaterials-related industry. Recently, great progress has been made experimentally to selectively control SWCNT diameter and chirality
Lee J. Richter, Ahmad R. Kirmani, Xue Wang, Wang Ziyuan, Dinh Cao-Thang, Li Jun, Nam Dae-Hyun, Li Fengwang, Huang Chun-Wei, Tan Chih-Shan, Chen Zitao, Chi Miaofang, Gabardo M. Christine, Seiifitokaldani Ali, Todorovic Petar, Proppe Andrew, Pang Yuanjie, wang yuhang, Ip H. Alexander, Shen-Chuan Lo, shana O. kelley, David Sinton, Edward H. Sargent, Tao-Tao Zhuang, Benjamin Scheffel
The electroreduction of C1 feedgas to high-energy-density fuels provides an attractive avenue to the storage of renewable electricity. Much progress has been made to improve selectivity to C1 and C2 products, however, the selectivity to desirable high
Robert F. DeJaco, Matheus D. de Mello, Huong Giang Nguyen, Mi Young Jeon, Roger D. van Zee, Michael Tsapatsis, Ilja J. Siepmann
In this work, batch-adsorption experiments and molecular simulations are employed to probe the adsorption of binary mixtures containing ethanol or a linear alkane-1,n-diol solvated in water or ethanol onto silicalite-1. Since the batch-adsorption
Justin E. Elenewski, Kirill Velizhanin, Michael P. Zwolak
While ubiquitous, energy redistribution remains a poorly understood facet of the nonequilibrium thermodynamics of biomolecules. At the molecular level, finite-size effects, pronounced nonlinearities, and ballistic processes conspire to produce behavior
Harold W. Hatch, Steven W. Hall, Jeffery R. Errington, Vincent K. Shen
While ionic liquids have promising applications as industrial solvents, predicting their fluid phase properties and coexistence remains a challenge. Grand canonical Monte Carlo simulation is an effective method for such predictions, but equilibration is
Thomas J. Bruno, Tara Fortin, Marcia L. Huber, Arno D. Laesecke, Eric Lemmon, Elisabeth Mansfield, Mark O. McLinden, Stephanie L. Outcalt, Richard A. Perkins, Kimberly N. Urness, Jason A. Widegren
This report summarizes the results of work performed for the Naval Air Warfare Center Aircraft Division by the National Institute of Standards and Technology (NIST), Applied Chemicals and Materials Division on the properties of polyol ester lubricants
Arni Sturluson, Melanie Huynh, Alec Kaija, Caleb Laird, Sunghyun Yoon, Feier Hou, Zhenxing Feng, Christopher E. Wilmer, Yamil J. Colon, Yongchul G. Chung, Daniel Siderius, Cory M. Simon
Metal-organic frameworks (MOFs) are highly tunable, extended-network, crystalline, nanoporous materials with applications in gas storage, separations, and sensing. We review how molecular models and simulations of gas adsorption in MOFs have lucidly
Wyatt Thornley, Sarah Wirick, Maximilian Riedel-Topper, Nathan J. DeYonker, Thomas E. Bitterwolf, Christopher J. Stromberg, Edwin J. Heilweil
Two asymmetrically structured model compounds for the hydrogen-generating [Fe-Fe]-hydrogenase active site were investigated to determine the ultrafast photodynamics, structural intermediates, and photoproducts compared to more common symmetric di-iron
Bryan M. Barnes, Hui Zhou, Richard M. Silver, Mark Alexander Henn
The successful combination of electromagnetic scattering simulations and optical measurements allows for the quantification of deep-subwavelength features, including thicknesses via ellipsometry and parameterized geometries via scatterometry. Although
Kamal Choudhary, Kevin F. Garrity, Francesca M. Tavazza
We present a novel methodology to identify topologically non-trivial materials based on band inversion induced by spin-orbit coupling (SOC) effect. Specifically, we compare the density functional theory (DFT) based wavefunctions with and without spin-orbit
Dustin A. Hite, Hossein Jooya, X Fan, Kyle S. McKay, David P. Pappas, H.R. Sadeghpour
We show in this work that the work function change due to carbon adatom adsorption is not predominantly affected by the crystallographic orientation of the gold surface. Ab-initio calculations within density-functional theory are performed on carbon
Emily G. Bittle, Adam J. Biacchi, Lisa A. Fredin, Andrew A. Herzing, Thomas C. Allison, Angela R. Hight Walker, David J. Gundlach
Charge transport in organic semiconductors is governed by a mix of polaron hopping and band- like transport mechanisms. The energy of polaron hopping and formation are similar in magnitude to the energies of inter- and intra- molecular modes, which points
Tiara A. Maula, Harold Hatch, Vincent K. Shen, Rangarajan Srinivas, Jeetain Mittal
Molecular building blocks which self-assemble into large ordered porous networks have been long sought-after, and have led to the development of metal organic frameworks and covalent organic frameworks. However, despite the great potential possessed by
M. L. De Leoz, Yamil Simon, Robert J. Woods, Stephen E. Stein
Reference spectral library searching, while widely used to identify compounds in other areas of mass spectrometry, is not commonly used in glycomics. Building on a study by Cotter and coworkers on analysis of sialylated oligosaccharides using atmospheric
Eugene Paulechka, Dzmitry V. Shakhno, Aleh V. Shakhno
Determination of the shortest distances between particles is one of the most time-consuming parts of molecular simulation. In this work, we demonstrate that the use of signed-integer storage of coordinates in a scaled box allows one to skip multiple
Edward Maginn, Richard A. Messerly, Daniel Carlson, Daniel Roe, J. R. Elliott
The ability to predict transport properties (i.e. diffusivity, viscosity, conductivity) is one of the primary benefits of molecular simulation. Although most studies focus on the accuracy of the simulation output compared to experimental data, such a
Mark Anders, Patrick M. Lenahan, Arthur H. Edwards, Peter A. Schultz, Renee M. Van Ginhoven
The performance of SiC-based metal-oxide-semiconductor field-effect transistors (MOSFETs) is greatly enhanced by a post oxidation anneal in NO. These anneals greatly improve effective channel mobilities and substantially decrease interface trap densities
Sugata Chowdhury, Nacole B. King, Winnie K. Wong-Ng
Rutile TiO2 have been investigated using first-principle density functional theory (DFT). The equilibrium lattice parameters, electronic and optical properties of rutile TiO2 have been evaluated. Calculations were performed using the generalized gradient
Vojtech Stejfa, Ala Bazyleva, Michal Fulem, Jan Rohlicek, Eliska Skorepova, Kvetoslav Ruzicka, Andrey V. Blokhin
The thermodynamic properties, phase behavior, and kinetics of polymorph transformations of racemic (DL-) and enantiopure (L-) menthol were studied using a combination of advanced experimental techniques, including static vapor pressure measurements