Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Raman spectroscopy-enhanced IIT: In situ analysis of mechanically stressed polycrystalline Si thin films

Published

Author(s)

Yvonne B. Gerbig, Chris A. Michaels, Robert F. Cook

Abstract

Exposed to mechanical stress, semiconductor materials may phase transform, resulting in changes of crystallographic structure and material properties, rather than deform by plastic flow. As a consequence, prediction of the state and distribution of strain in semiconductors has become crucial for the evaluation of performance and reliability of structures made of these materials. Indentation-induced phase transformation processes were studied by in situ Raman imaging of the deformed contact region of silicon, employing a Raman spectroscopy-enhanced instrumented indentation technique (IIT). This is, to our knowledge, the first sequence of Raman images documenting the evolution of the strain fields and combined changes in the phase distributions of a material under contact load.
Proceedings Title
SEM 2014 Annual Conference & Exposition on Experimental and Applied Mechanics
Volume
6
Conference Dates
June 2-5, 2014
Conference Location
Greenville, SC

Keywords

Indentation, in situ, Raman imaging, phase transformation, silicon

Citation

Gerbig, Y. , Michaels, C. and Cook, R. (2014), Raman spectroscopy-enhanced IIT: In situ analysis of mechanically stressed polycrystalline Si thin films, SEM 2014 Annual Conference & Exposition on Experimental and Applied Mechanics, Greenville, SC, [online], https://doi.org/10.1007/978-3-319-06989-0_26 (Accessed March 3, 2024)
Created July 8, 2014, Updated November 10, 2018