NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Raman spectroscopic observation of dehydrogenation in ball-milled LiNH2-LiBH4-MgH2 nanoparticles
Published
Author(s)
Jason Hattrick-Simpers, Chun Chiu, James E. Maslar, Leonid A. Bendersky, Michael E. Niemann, Sesha S. Srinivasan, Elias K. Stefanakos
Abstract
In situ Raman spectroscopy was used to monitor the dehydrogenation of ball-milled mixtures of LiNH2 LiBH4 MgH2 nanoparticles. The as-milled powders were found to contain a mixture of Li4BN3H10 and Mg(NH2)2, with no evidence of residual LiNH2 or LiBH4. It was observed that the dehydrogenation of both of Li4BN3H10 and Mg(NH2)2 begins at 353 K. The Mg(NH2)2 was completely consumed by 415 K, while Li4BN3H10 persisted and continued to release hydrogen up to 453 K. Subsequent hydrogen release is realized by the direct conversion of melted Li4BN3H10 to Li2Mg(NH)2. Cycling studies of the ball-milled mixture at 423 K and 8 MPa (80 bar) found that during rehydrogenation Li4BN3H10 Raman spectral modes reappear, indicating partial reversal of the Li4BN3H10 to Li2Mg(NH)2 transformation.
Hattrick-Simpers, J.
, Chiu, C.
, Maslar, J.
, Bendersky, L.
, Niemann, M.
, Srinivasan, S.
and Stefanakos, E.
(2010),
Raman spectroscopic observation of dehydrogenation in ball-milled LiNH2-LiBH4-MgH2 nanoparticles, International Journal of Hydrogen Energy, [online], https://doi.org/10.1016/j.ijhydene.2010.02.101
(Accessed October 14, 2025)