NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Wesley Garey, Richard A. Rouil, Evan Black, Tanguy Ropitault, Weichao Gao
Abstract
The Open Radio Access Network (O-RAN) Alliance is the industry led standardization effort, with the sole purpose of evolving the Radio Access Network (RAN) to be more open, intelligent, interoperable, and autonomous to support the ever growing need of improved performance and flexibility in mobile networks. This paper introduces an extension to the network simulator, Network Simulator 3 (ns-3), that mimics the behavior and components of the O-RAN architecture that have been defined by the O-RAN Alliance. In this paper we will describe the O-RAN architecture, our model in ns-3, and a Long Term Evolution (LTE) use case that utilizes Machine Learning (ML) and its integration with ns-3. At the end of this paper, the reader will have a general understanding of O-RAN, and the capabilities of our fully-simulated contribution, so that it can be leveraged to evaluate and study O-RAN-based solutions.
Garey, W.
, Rouil, R.
, Black, E.
, Ropitault, T.
and Gao, W.
(2023),
O-RAN with Machine Learning in ns-3, Workshop on ns-3 (WNS3) 2023, Ballston, VA, US, [online], https://doi.org/10.1145/3592149.3592157, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=936291
(Accessed October 8, 2025)